Primes in subsets and exponential sums
SSANT2021

Andrei Shubin

July 2, 2021
Prime Number Theorem (Hadamard, Vallée Poussin, 1896)

\[\pi(x) := \sum_{p \leq x} 1 = \frac{x}{\log x} + O \left(\frac{x}{(\log x)^2} \right) \]

For primes in arithmetic progressions \(qr + a, \text{GCD}(a, q) = 1 \) the formula

\[\pi(X; q, a) := \sum_{\substack{p \leq x \\text{ } \to p \equiv a \pmod{q}}} 1 = \frac{\pi(x)}{\varphi(q)} + o \left(\frac{\pi(x)}{\varphi(q)} \right) \]

is known:

- for all \(q \leq (\log X)^A \) as Siegel-Walfisz theorem (1936)
- for “almost all” \(q \leq X^{1/2-\varepsilon} \) as Bombieri-Vinogradov theorem (1965)
Prime Number Theorem (Hadamard, Vallée Poussin, 1896)

\[
\pi(x) := \sum_{p \leq x} 1 = \frac{x}{\log x} + O \left(\frac{x}{(\log x)^2} \right)
\]

For primes in arithmetic progressions \(qr + a \), \(\gcd(a, q) = 1 \) the formula

\[
\pi(X; q, a) := \sum_{\substack{p \leq x \\ p \equiv a \pmod{q}}} 1 = \frac{\pi(x)}{\varphi(q)} + o \left(\frac{\pi(x)}{\varphi(q)} \right)
\]

is known:
- for all \(q \leq (\log X)^A \) as Siegel-Walfisz theorem (1936)
- for “almost all” \(q \leq X^{1/2-\varepsilon} \) as Bombieri-Vinogradov theorem (1965)
Basic facts

Prime Number Theorem (Hadamard, Vallée Poussin, 1896)

\[\pi(x) := \sum_{p \leq x} 1 = \frac{x}{\log x} + O \left(\frac{x}{(\log x)^2} \right) \]

For primes in arithmetic progressions \(qr + a \), \(\text{GCD}(a, q) = 1 \) the formula

\[\pi(X; q, a) := \sum_{\substack{p \leq x \\ p \equiv a \pmod{q}}} 1 = \frac{\pi(x)}{\varphi(q)} + o \left(\frac{\pi(x)}{\varphi(q)} \right) \]

is known:
- for all \(q \leq (\log X)^A \) as Siegel-Walfisz theorem (1936)
- for “almost all” \(q \leq X^{1/2-\varepsilon} \) as Bombieri-Vinogradov theorem (1965)
Basic facts

Prime Number Theorem (Hadamard, Vallée Poussin, 1896)

$$\pi(x) := \sum_{p \leq x} 1 = \frac{x}{\log x} + O \left(\frac{x}{(\log x)^2} \right)$$

For primes in arithmetic progressions $qr + a$, $\gcd(a, q) = 1$ the formula

$$\pi(X; q, a) := \sum_{p \leq x \atop p \equiv a \pmod{q}} 1 = \frac{\pi(x)}{\phi(q)} + o \left(\frac{\pi(x)}{\phi(q)} \right)$$

is known:
- for all $q \leq (\log X)^A$ as Siegel-Walfisz theorem (1936)
- for “almost all” $q \leq X^{1/2-\varepsilon}$ as Bombieri-Vinogradov theorem (1965)
Primes in subsets

Fractional part $\{x\} := x - \lfloor x \rfloor$

Define the set

$$\mathbb{E}(1/2) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < 0.5 \right\}$$

$n \in \mathbb{E}(1/2)$ means there is integer k such that

$$k \leq n^{1/2} < (k + 0.5) \quad \text{or} \quad k^2 \leq n < (k + 0.5)^2$$

$$\sum_{\substack{p \leq x \\ p \in \mathbb{E}(1/2)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{14/15} \right) \quad \text{Vinogradov (1940)}$$

Follows from the bound $\sum_{p \leq x} e(h\sqrt{p}) \ll X^{11/12}$
Primes in subsets

Fractional part \(\{x\} := x - \lfloor x \rfloor \)
Define the set
\[
\mathbb{E}(1/2) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < 0.5 \right\}
\]

\(n \in \mathbb{E}(1/2) \) means there is integer \(k \) such that
\[
k \leq n^{1/2} < (k + 0.5) \quad \text{or} \quad k^2 \leq n < (k + 0.5)^2
\]

\[
\sum_{\substack{p \leq x \\ p \in \mathbb{E}(1/2)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{14/15} \right) \quad \text{Vinogradov (1940)}
\]

Follows from the bound \(\sum_{p \leq x} e(h\sqrt{p}) \ll X^{11/12} \)
Primes in subsets

Fractional part \(\{x\} := x - \lfloor x \rfloor \)

Define the set

\[\mathbb{E}(1/2) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < 0.5 \right\} \]

\(n \in \mathbb{E}(1/2) \) means there is integer \(k \) such that

\[k \leq n^{1/2} < (k + 0.5) \quad \text{or} \quad k^2 \leq n < (k + 0.5)^2 \]

\[
\sum_{\substack{p \leq x \\ p \in \mathbb{E}(1/2)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{14/15} \right) \quad \text{Vinogradov (1940)}
\]

Follows from the bound \(\sum_{p \leq x} e(h \sqrt{p}) \ll x^{11/12} \)
Primes in subsets

Fractional part \(\{x\} := x - \lfloor x \rfloor \)

Define the set

\[
\mathcal{E}(1/2) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < 0.5 \right\}
\]

\(n \in \mathcal{E}(1/2) \) means there is integer \(k \) such that

\[
k \leq n^{1/2} < (k + 0.5) \quad \text{or} \quad k^2 \leq n < (k + 0.5)^2
\]

\[
\sum_{\substack{p \leq x \\ p \in \mathcal{E}(1/2)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{14/15} \right) \quad \text{Vinogradov (1940)}
\]

Follows from the bound \(\sum_{p \leq x} e(h \sqrt{p}) \ll x^{11/12} \)
Primes in subsets

Fractional part \(\{x\} := x - \lfloor x \rfloor \)
Define the set

\[\mathbb{E}(1/2) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < 0.5 \right\} \]

\(n \in \mathbb{E}(1/2) \) means there is integer \(k \) such that

\[k \leq n^{1/2} < (k + 0.5) \quad \text{or} \quad k^2 \leq n < (k + 0.5)^2 \]

\[
\sum_{\substack{p \leq x \\ p \in \mathbb{E}(1/2)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{14/15} \right) \quad \text{Vinogradov (1940)}
\]

Follows from the bound \(\sum_{p \leq x} e(h\sqrt{p}) \ll X^{11/12} \)
Primes in subsets

Direction №1: reduce the domain for \(\{n^{1/2}\} \):

\[
A\left(\frac{1}{2}, c\right) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < n^{-c} \right\}
\]

Infinitely many primes in \(A(1/2, 1/2) \iff \) infinitely many primes of the form \(n^2 + 1 \). Currently the result is known for all \(c \leq 0.262 \) (Harman, Lewis 2001).

Direction №2: change the function \(\{n^{1/2}\} \rightarrow \{g(n)\} \). Consider \(g(n) = n^\alpha \):

\[
E(\alpha) := \left\{ n \in \mathbb{N} : \{n^\alpha\} < 0.5 \right\}
\]

If \(\alpha > 1, \alpha \notin \mathbb{N} \), the structure is more complicated: \(k^{1/\alpha} \leq n < (k + 0.5)^{1/\alpha} \)

\[
\sum_{\substack{p \leq x \ \text{p} \in E(\alpha)}} 1 = \frac{1}{2} \pi(x) + O\left(x^{1-\vartheta(\alpha)}\right) \quad \text{for all } \alpha > 0, \alpha \notin \mathbb{N} \quad \text{Vinogradov, Baker, Kolesnik, …}
\]
Primes in subsets

Direction №1: reduce the domain for \(\{n^{1/2}\} \):

\[
A(1/2, c) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < n^{-c} \right\}
\]

Infinitely many primes in \(A(1/2, 1/2) \leftrightarrow \) infinitely many primes of the form \(n^2 + 1 \). Currently the result is known for all \(c \leq 0.262 \) (Harman, Lewis 2001).

Direction №2: change the function \(\{n^{1/2}\} \rightarrow \{g(n)\} \). Consider \(g(n) = n^\alpha \):

\[
E(\alpha) := \left\{ n \in \mathbb{N} : \{n^\alpha\} < 0.5 \right\}
\]

If \(\alpha > 1, \alpha \notin \mathbb{N} \), the structure is more complicated: \(k^{1/\alpha} \leq n < (k + 0.5)^{1/\alpha} \)

\[
\sum_{p \leq x \atop p \in E(\alpha)} \frac{1}{p} = \frac{1}{2} \pi(x) + O \left(x^{1-\vartheta(\alpha)} \right) \quad \text{for all } \alpha > 0, \alpha \notin \mathbb{N} \quad \text{ Vinogradov, Baker, Kolesnik, ...}
\]
Primes in subsets

Direction №1: reduce the domain for \(\{n^{1/2}\} \):

\[
\mathbb{A}(1/2, c) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < n^{-c} \right\}
\]

Infinitely many primes in \(\mathbb{A}(1/2, 1/2) \iff \) infinitely many primes of the form \(n^2 + 1 \). Currently the result is known for all \(c \leq 0.262 \) (Harman, Lewis 2001).

Direction №2: change the function \(\{n^{1/2}\} \rightarrow \{g(n)\} \). Consider \(g(n) = n^\alpha \):

\[
\mathbb{E}(\alpha) := \left\{ n \in \mathbb{N} : \{n^\alpha\} < 0.5 \right\}
\]

If \(\alpha > 1, \alpha \notin \mathbb{N} \), the structure is more complicated: \(k^{1/\alpha} \leq n < (k + 0.5)^{1/\alpha} \)

\[
\sum_{\substack{p \leq x \\text{ prime} \atop p \in \mathbb{E}(\alpha)}} \frac{1}{p} = \frac{1}{2} \pi(x) + O \left(x^{1-\vartheta(\alpha)}\right) \quad \text{for all } \alpha > 0, \alpha \notin \mathbb{N} \quad \text{Vinogradov, Baker, Kolesnik,} \ldots
Primes in subsets

Direction №1: reduce the domain for \(\{n^{1/2}\} \):

\[
\mathbb{A}(1/2, c) := \left\{ n \in \mathbb{N} : \{n^{1/2}\} < n^{-c} \right\}
\]

Infinitely many primes in \(\mathbb{A}(1/2, 1/2) \iff \) infinitely many primes of the form \(n^2 + 1 \).
Currently the result is known for all \(c \leq 0.262 \) (Harman, Lewis 2001).

Direction №2: change the function \(\{n^{1/2}\} \rightarrow \{g(n)\} \). Consider \(g(n) = n^\alpha \):

\[
\mathbb{E}(\alpha) := \left\{ n \in \mathbb{N} : \{n^\alpha\} < 0.5 \right\}
\]

If \(\alpha > 1, \alpha \notin \mathbb{N} \), the structure is more complicated: \(k^{1/\alpha} \leq n < (k + 0.5)^{1/\alpha} \)

\[
\sum_{\substack{p \leq x \\ p \in \mathbb{E}(\alpha)}} 1 = \frac{1}{2} \pi(x) + O \left(x^{1-\vartheta(\alpha)} \right) \quad \text{for all } \alpha > 0, \alpha \notin \mathbb{N} \quad \text{Vinogradov, Baker, Kolesnik, ...}
\]
Primes from subsets in arithmetic progressions

One can establish the asymptotics for primes from $E(\alpha) \cap \{ qr + a \}$:

$$
\pi_{E(\alpha)}(x; q, a) := \sum_{\substack{p \leq x \\ p \equiv a \pmod{q} \\ p \in E(\alpha)}} 1 = \frac{1}{2} \pi(x; q, a) + O \left(\frac{\pi(x; q, a)}{(\log x)^A} \right)
$$

As a corollary we obtain an analogue of Bombieri-Vinogradov theorem: for "almost all" $q \leq x^{\theta - \varepsilon}$:

$$
\pi_{E(\alpha)}(x; q, a) = \frac{\pi_{E(\alpha)}(x)}{\varphi(q)} + O \left(\frac{\pi_{E(\alpha)}(x)}{(\log x)^A} \right)
$$

- $\alpha = 1/2$, $\theta = 1/4$, Tolev (1997)
- $1/2 \leq \alpha < 1$, $\theta = 1/3$, Gritsenko, Zinchenko (2013)
- $\alpha > 0$, $\alpha \notin \mathbb{N}$, $\theta = 1/3$, S. (2019)
- $0 < \alpha < 1/9$, $\theta = 2/5 - 3\alpha/5$, S. (2020)
Primes from subsets in arithmetic progressions

One can establish the asymptotics for primes from $E(\alpha) \cap \{qr + a\}$:

$$\pi_{E(\alpha)}(x; q, a) := \sum_{\substack{p \leq x \\ p \in E(\alpha) \\ p \equiv a \pmod{q}}} 1 = \frac{1}{2} \pi(x; q, a) + O \left(\frac{\pi(x; q, a)}{(\log x)^A} \right)$$

As a corollary we obtain an analogue of Bombieri-Vinogradov theorem: for “almost all” $q \leq x^{\theta-\varepsilon}$:

$$\pi_{E(\alpha)}(x; q, a) = \frac{\pi_{E(\alpha)}(x)}{\varphi(q)} + O \left(\frac{\pi_{E(\alpha)}(x)}{(\log x)^A} \right)$$

$\alpha = 1/2, \quad \theta = 1/4, \quad$ Tolev (1997)

$1/2 \leq \alpha < 1, \quad \theta = 1/3, \quad$ Gritsenko, Zinchenko (2013)

$\alpha > 0, \alpha \notin \mathbb{N} \quad \theta = 1/3, \quad$ S. (2019)

$0 < \alpha < 1/9 \quad \theta = 2/5 - 3\alpha/5 \quad$ S. (2020)
Primes from subsets in arithmetic progressions

One can establish the asymptotics for primes from \(\mathbb{E}(\alpha) \cap \{ qr + a \} \):

\[
\pi_{\mathbb{E}(\alpha)}(x; q, a) := \sum_{\substack{p \leq x \\ p \in \mathbb{E}(\alpha) \\ p \equiv a \pmod{q}}} 1 = \frac{1}{2} \pi(x; q, a) + O \left(\frac{\pi(x; q, a)}{(\log x)^A} \right)
\]

As a corollary we obtain an analogue of Bombieri-Vinogradov theorem: for “almost all” \(q \leq x^{\theta - \varepsilon} \):

\[
\pi_{\mathbb{E}(\alpha)}(x; q, a) = \frac{\pi_{\mathbb{E}(\alpha)}(x)}{\varphi(q)} + O \left(\frac{\pi_{\mathbb{E}(\alpha)}(x)}{(\log x)^A} \right)
\]

\(\alpha = 1/2, \theta = 1/4 \), Tolev (1997)

\(1/2 \leq \alpha < 1, \theta = 1/3 \), Gritsenko, Zinchenko (2013)

\(\alpha > 0, \alpha \notin \mathbb{N}, \theta = 1/3 \), S. (2019)

\(0 < \alpha < 1/9, \theta = 2/5 - 3\alpha/5 \), S. (2020)
Idea of the proof

The main goal

\[
\sum_{\begin{array}{c} p \leq x \\ p \equiv a \pmod{q} \end{array}} e(hp^\alpha) \ll \left(\frac{x}{q} \right)^{1-\delta}
\]

Tool №1: Van der Corput k-derivative test (due to Heath-Brown 2017):

\[
\sum_{n \sim y} e(g(n)) \ll y^{1+\varepsilon} \left(\left(g^{(k)}(y) \right)^{1/k(k-1)} + y^{-1/k(k-1)} + y^{-2/k(k-1)} g^{(k)}(y)^{-2/k^2(k-1)} \right)
\]

Tool №2: Vaughan & Heath-Brown identities to move from the sum over primes to the sum over all integers

\[
\sum_{p \leq x} e(hp^\alpha) \iff \sum_{n \leq y} e(Dn^\alpha)
\]

The larger y is, the better
Idea of the proof

The main goal

\[\sum_{p \leq x, \quad p \equiv a \pmod{q}} e(h p^\alpha) \ll \left(\frac{x}{q} \right)^{1-\delta} \]

Tool №1: Van der Corput \(k \)-derivative test (due to Heath-Brown 2017):

\[\sum_{n \sim y} e(g(n)) \ll y^{1+\varepsilon} \left(\left(g^{(k)}(y) \right)^{1/k(k-1)} + y^{-1/k(k-1)} + y^{-2/k(k-1)} \left(g^{(k)}(y) \right)^{-2/k^2(k-1)} \right) \]

Tool №2: Vaughan & Heath-Brown identities to move from the sum over primes to the sum over all integers

\[\sum_{p \leq x} e(h p^\alpha) \quad \iff \quad \sum_{n \leq y} e(Dn^\alpha) \]

The larger \(y \) is, the better
Idea of the proof

The main goal

\[\sum_{p \leq x, \ p \equiv a \ (\text{mod } q)} e(hp^\alpha) \ll \left(\frac{x}{q} \right)^{1-\delta} \]

Tool №1: Van der Corput k-derivative test (due to Heath-Brown 2017):

\[\sum_{n \sim y} e(g(n)) \ll y^{1+\varepsilon} \left((g^{(k)}(y))^{1/k(k-1)} + y^{-1/k(k-1)} + y^{-2/k(k-1)} (g^{(k)}(y))^{-2/k^2(k-1)} \right) \]

Tool №2: Vaughan & Heath-Brown identities to move from the sum over primes to the sum over all integers

\[\sum_{p \leq x} e(hp^\alpha) \iff \sum_{n \leq y} e(Dn^\alpha) \]

The larger y is, the better
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

\[\sum_{p \leq x, \ p \equiv a \ (\text{mod} \ q)} e(hp^\alpha) \rightarrow \sum \mu(d_{k+1}) \cdots \mu(d_{2k}) e\left(h(d_1 \ldots d_{2k})^\alpha \right) \]

The last is split into three types of sums. Fix the parameter \(\frac{1}{10} < \sigma < \frac{1}{6} \):

Type I situation: \(\exists \ d_i > x^{1/2+\sigma} \) (‘one long smooth variable’)

Type II situation: there is a partition \(\{d_1, \ldots, d_{2k}\} = S \cup T \):

\[x^{1/2-\sigma} < \prod_{S} d_i \leq \prod_{T} d_i < x^{1/2+\sigma} \] (two long non-smooth variables)

Type III situation: \(\exists \ d_i \sim d_j \sim d_k \sim x^{1/3} \) (three smooth variables)

If \(\sigma = 1/6 \) Type III does not occur
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

\[\sum_{p \leq x} e(hp^\alpha) \quad \rightarrow \quad \sum_{d_1 \ldots d_{2k} \sim x} \mu(d_{k+1}) \ldots \mu(d_{2k}) e\left(h(d_1 \ldots d_{2k})^\alpha\right) \]

The last is split into three types of sums. Fix the parameter \(1/10 < \sigma < 1/6:\)

Type I situation: \(\exists d_i > x^{1/2+\sigma}\) (‘one long smooth variable’)

Type II situation: there is a partition \(\{d_1, \ldots, d_{2k}\} = S \cup T:\)

\[x^{1/2-\sigma} < \prod_S d_i \leq \prod_T d_i < x^{1/2+\sigma} \] (two long non-smooth variables)

Type III situation: \(\exists d_i \sim d_j \sim d_k \sim x^{1/3}\) (three smooth variables)

If \(\sigma = 1/6\) Type III does not occur
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

$$\sum_{\substack{p \leq x \atop p \equiv a \pmod{q}}} e(hp^\alpha) \rightarrow \sum_{d_1 \cdots d_{2k} \sim x} \mu(d_{k+1}) \cdots \mu(d_{2k})e\left(h(d_1 \cdots d_{2k})^\alpha\right)$$

The last is split into three types of sums. Fix the parameter $1/10 < \sigma < 1/6$:

Type I situation: $\exists d_i > x^{1/2+\sigma}$ ('one long smooth variable')

Type II situation: there is a partition $\{d_1, \ldots, d_{2k}\} = S \cup T$:

$$x^{1/2-\sigma} < \prod_S d_i \leq \prod_T d_i < x^{1/2+\sigma} \quad \text{(two long non-smooth variables)}$$

Type III situation: $\exists d_i \sim d_j \sim d_k \sim x^{1/3}$ (three smooth variables)

If $\sigma = 1/6$ Type III does not occur
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

\[\sum_{\substack{p \leq x \\atop p \equiv a \pmod{q}}} e(hp^\alpha) \rightarrow \sum_{d_1 \ldots d_{2k} \sim x} \mu(d_{k+1}) \ldots \mu(d_{2k}) e\left(h(d_1 \ldots d_{2k})^\alpha\right) \]

The last is split into three types of sums. Fix the parameter \(1/10 < \sigma < 1/6 \):

Type I situation: \(\exists d_i > x^{1/2+\sigma} \) (‘one long smooth variable’)

Type II situation: there is a partition \(\{d_1, \ldots, d_{2k}\} = S \cup T \):

\[x^{1/2-\sigma} < \prod_{S} d_i \leq \prod_{T} d_i < x^{1/2+\sigma} \] (two long non-smooth variables)

Type III situation: \(\exists d_i \sim d_j \sim d_k \sim x^{1/3} \) (three smooth variables)

If \(\sigma = 1/6 \) Type III does not occur
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

$$\sum_{p \leq x \atop p \equiv a \pmod{q}} e(hp^\alpha) \rightarrow \sum \mu(d_{k+1}) \ldots \mu(d_{2k}) e\left(h(d_1 \ldots d_{2k})^\alpha\right)$$

The last is split into three types of sums. Fix the parameter $1/10 < \sigma < 1/6$:

Type I situation: $\exists d_i > x^{1/2+\sigma}$ (‘one long smooth variable’)

Type II situation: there is a partition $\{d_1, \ldots, d_{2k}\} = S \cup T$:

$$x^{1/2-\sigma} < \prod_{S} d_i \leq \prod_{T} d_i < x^{1/2+\sigma}$$ (two long non-smooth variables)

Type III situation: $\exists d_i \sim d_j \sim d_k \sim x^{1/3}$ (three smooth variables)

If $\sigma = 1/6$ Type III does not occur
Heath-Brown identity. Type I, II, III

Heath-Brown identity:

\[\sum_{\substack{p \leq x \\ p \equiv a \pmod{q}}} e(hp^\alpha) \quad \rightarrow \quad \sum_{\substack{d_1 \ldots d_{2k} \leq x \\ d_1 \ldots d_{2k} \equiv a \pmod{q}}} \mu(d_{k+1}) \ldots \mu(d_{2k})e\left(h(d_1 \ldots d_{2k})^\alpha\right) \]

The last is split into three types of sums. Fix the parameter \(1/10 < \sigma < 1/6\):

Type I situation: \(\exists d_i > x^{1/2+\sigma}\) (‘one long smooth variable’)

Type II situation: there is a partition \(\{d_1, \ldots, d_{2k}\} = S \cup T\):

\[x^{1/2-\sigma} < \prod_{S} d_i \leq \prod_{T} d_i < x^{1/2+\sigma} \] (two long non-smooth variables)

Type III situation: \(\exists d_i \sim d_j \sim d_k \sim x^{1/3}\) (three smooth variables)

If \(\sigma = 1/6\) Type III does not occur
Type I & II sums

Type I situation:

\[\sum_{d_i \geq x^{1/2+\sigma}} e(Dd_i^\alpha) \quad \rightarrow \quad \text{Van der Corput k-test} \]

\[d_i \equiv a \quad (\text{mod } q) \]

Type II situation:

\[\sum_{x^{1/2-\sigma} < d_1 < x^{1/2+\sigma}} a(d_1) \quad \sum_{x^{1/2-\sigma} < d_2 < x^{1/2+\sigma}} b(d_2) e\left(D(d_1d_2)^\alpha\right) \quad \rightarrow \quad \text{Cauchy + Corput} \]

\[d_1 d_2 \equiv a \quad (\text{mod } q) \]
Type I & II sums

Type I situation:
\[
\sum_{d_i \geq x^{1/2+\sigma}} e(Dd_i^\alpha) \rightarrow \text{Van der Corput k-test}
\]
\[d_i \equiv a \pmod{q} \]

Type II situation:
\[
\sum_{x^{1/2-\sigma} < d_1 < x^{1/2+\sigma}} a(d_1) \sum_{x^{1/2-\sigma} < d_2 < x^{1/2+\sigma}} b(d_2)e(D(d_1d_2)^\alpha) \rightarrow \text{Cauchy + Corput}
\]
\[d_1d_2 \equiv a \pmod{q} \]
Type III sum

Moving to characters

\[
\sum_{d_1, d_2, d_3 \sim x^{1/3}, \atop d_1 d_2 d_3 \equiv a \pmod{q}} e\left(D(d_1 d_2 d_3)^\alpha\right) \rightarrow
\]

\[
\frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \sum_{d_1, d_2, d_3 \sim x^{1/3}} \chi(d_1) \chi(d_2) \chi(d_3) e\left(D(d_1 d_2 d_3)^\alpha\right)
\]

Apply Poisson summation + Stationary phase to (for example) \(d_2, d_3\):

\[
\left(\ldots\right) \sum_{d_1 \sim x^{1/3}} \sum_{s_2, s_3 \sim q/x^{1/3} - \alpha} |Kl_q(s_2, s_3)|
\]

Weil’s bound: \(|Kl_q(s_2, s_3)| \leq q^{1/2 + \varepsilon}(q, s_2, s_3)^{1/2} \).
Type III sum

Moving to characters

\[\sum_{d_1, d_2, d_3 \sim x^{1/3}} e\left(D(d_1 d_2 d_3)^\alpha \right) \rightarrow \]

\[\frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \sum_{d_1, d_2, d_3 \sim x^{1/3}} \chi(d_1) \chi(d_2) \chi(d_3) e\left(D(d_1 d_2 d_3)^\alpha \right) \]

Apply Poisson summation + Stationary phase to (for example) \(d_2, d_3 \):

\[(\ldots) \sum_{d_1 \sim x^{1/3}} \sum_{s_2, s_3 \sim q/x^{1/3} - \alpha} |Kl_q(s_2, s_3)| \]

Weil's bound: \(|Kl_q(s_2, s_3)| \leq q^{1/2+\epsilon} (q, s_2, s_3)^{1/2} \).
Type III sum

Moving to characters

\[
\sum_{d_1, d_2, d_3 \sim x^{1/3}} e \left(D(d_1 d_2 d_3)^\alpha \right) \rightarrow \\
\frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \sum_{d_1, d_2, d_3 \sim x^{1/3}} \chi(d_1) \chi(d_2) \chi(d_3) e \left(D(d_1 d_2 d_3)^\alpha \right)
\]

Apply Poisson summation + Stationary phase to (for example) \(d_2, d_3\):

\[
\left(\ldots \right) \sum_{d_1 \sim x^{1/3}} \sum_{s_2, s_3 \sim q / x^{1/3 - \alpha}} |Kl_q(s_2, s_3)|
\]

Weil's bound: \(|Kl_q(s_2, s_3)| \leq q^{1/2 + \epsilon} (q, s_2, s_3)^{1/2} \).
Type III sum

Moving to characters

\[
\sum_{d_1, d_2, d_3 \sim x^{1/3}} \sum_{d_1 d_2 d_3 \equiv a \pmod{q}} e\left(D(d_1 d_2 d_3)^\alpha\right) \rightarrow
\]

\[
\frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \sum_{d_1, d_2, d_3 \sim x^{1/3}} \chi(d_1) \chi(d_2) \chi(d_3) e\left(D(d_1 d_2 d_3)^\alpha\right)
\]

Apply Poisson summation + Stationary phase to (for example) \(d_2, d_3\):

\[
\left(\ldots\right) \sum_{d_1 \sim x^{1/3}} \sum_{s_2, s_3 \sim q/x^{1/3-\alpha}} |Kl_q(s_2, s_3)|
\]

Weil's bound: \(|Kl_q(s_2, s_3)| \leq q^{1/2+\varepsilon}(q, s_2, s_3)^{1/2} \).
Thank you for your attention!