
Correcting the subconvexity bound

I We want to obtain the bound∑
n∼
√

T

nit � T 1/2−η

with t ∼ T .

I We split into short intervals

∑
n∈[Nk ,Nk+H]

nit = N it ∑
h∈[0,H]

e
(ht

N − h2 · t
2N2 + . . .

)

with Nk = kH ∼
√

T .



Overall strategy

I Whenever
t

2N2 ≈
a
q + O

( 1
H2

)
with Hδ < q < H2−δ we will exhibit cancellations in the short
sum

I Whenever
t

2N2 ≈
a
q + O

( 1
H2−δ

)
with q ≤ Hδ we will bound the sum trivially, but we will show
there are few such intervals [N,N + H].



Correcting the subconvexity bound

I Usually ∑
h∈[0,H]

e(ϕ(h) + θ(h)) ≈
∑

h∈[0,H]
e(ϕ(h))

for any θ(h) with θ′(h)� 1/H for h ∈ [0,H].

I We approximate
t

2N2 = a
q + θN

with (a, q) = 1 and q ≤ Q := H2−δ and |θN | ≤ 1/(qQ).

I As long as q > Hδ we have |θN | ≤ 1/H2 and this means that
e(h2θ) can be ignored for q > Hδ.



Correcting the subconvexity bound
I Therefore for q > Hδ we have

∑
h∈[0,H]

e
(ht

N − h2
( t
2N2

))
≈

∑
h∈[0,H]

e
(ht

N −
h2a
q
)

I Furthermore given q we can find a b such that,

t
N = b

q + θ (mod 1)

with |θ| ≤ 1/q.

I So we get that the short sum is

∑
h∈[0,H]

e
(hb

q −
h2a
q + hθ

)

with |θ| ≤ 1/q.



Correcting the subconvexity
I We now apply Poisson summation:

∑
h∈[0,H]

e
(hb

q −
h2a
q + hθ

)
≈ 1

q
∑
|`|≤q/H

S(b− `, a)1
(
H
(
θ− `

q
))

where

S(a − `, b) =
∑

x (mod q)
e
(x(a − `)

q + x2b
q
)
� √q

I In particular bounding the right hand side trivially we get

∑
h∈[0,H]

e
(hb

q −
h2a
q + hθ

)
�
√q
H ≤ H1−δ/2

since q ≤ H2−δ.



Correcting the subconvexity bound

I This gives the first claim: that if

t
2N2 = a

q + O
( 1

H2

)
with Hδ ≤ q ≤ H2−δ then the short sum over [N,N + H] is
bounded by H1−δ/2.

I It remains to show that the number of intervals [N,N + H] with

t
2N2 = a

q + O
( 1

H2−δ

)
and q ≤ Hδ is small.



Correcting the subconvexity bound
I We wish to show,∑

kH∼
√

T

1
(
∃q ≤ Hδ :

∥∥∥ t
2(kH)2 −

a
q

∥∥∥ ≤ 1
H2−δ

)
�
√

T
H · H−η

for some η > 0.

I We can drop the ∃ by using the union bound. Bounding the
above by ∑

q≤Hδ
(a,q)=1

∑
kH∼

√
T

1
(∥∥∥ t

2(kH)2 −
a
q

∥∥∥ ≤ 1
H2−δ

)

I In particular it’s enough to show
∑

kH∼
√

T

1
(∥∥∥ t

2(kH)2 −
a
q

∥∥∥ ≤ 1
H2−δ

)
�
√

T
H H−2δ−η

for some η > 0.



Correcting the subconvexity bound

I As usual we expand into a trigonometric series

1
(∥∥∥ t

2(kH)2 −
a
q

∥∥∥ ≤ 1
H2−δ

)
≈ 1

H2−δ +
∑

0<|`|≤H2−δ

e
( `t
2(kH)2

)

I The main term is
√

T
H3−δ �

√
T

H H−2δ−η

for some η > 0, provided that δ is sufficiently small.

I The error term is

1
H2−δ

∑
|`|≤H2−δ

∑
k∼
√

T/H

e
( `t
2k2H2

)



Correcting the subconvexity bound

I We apply Poisson summation in k. The new length is

ϕ′
(√T

H
)
≈ H2−δT

(
√

T/H)3H2
≈ H3−δ
√

T

I If H is sufficiently small power of T then this is < 1. This
means that only the central term survives and therefore the
behavior of the sum is exactly the sum as the integral∫

x∼
√

T/H
e
( `t
2x2H2

)
dx �

√
T

H3−δ

by the first derivative test.

I This is exactly the same bound as we obtained from the main
term.



Correcting the subconvexity bound
I To summarize: we split the sum∑

n∼
√

T

nit

into
√

T/H intervals of length H.

I If on the interval [N,N + H] we have,
t

2N2 = a
q + O

( 1
H2

)
for some Hδ ≤ H2−δ, then we can bound the contribution of
this interval by H1−δ/2.

I The number of remaining intervals is (provided that H is
choosen a small power),

�
√

T
H3−δH2δ

and this is less than
√

TH−1−η for some η > 0 provided that δ
is sufficiently small.



Correcting the subconvexity

I These two together give us a subconvex bound for the
Riemann zeta-function.

I If you go through the proof carefully you see that we also get
an algorithm for computing the Riemann zeta function in time
O(T 1/2−δ) for some δ > 0.



Consequences of bounds for ζ(s)

I We established a subconvex bound

|ζ(1
2 + it)| � (1 + |t|)1/4−δ

for some δ > 0.

I In reality we expect

|ζ(1
2 + it)| �ε (1 + |t|)ε

for any given ε > 0.

I This is called the Lindelof Hypothesis and is the strongest
bound that one can hope for (at the scale of power-savings).



Lindelof Hypothesis

I It is easy to motivate the Lindelof Hypothesis: We can write

ζ(1
2 + it) ≈

∑
n≤T

1
n1/2+it

I Since the frequency pit are uncorrelated it is reasonable to
think of nit as a random multiplicative function Xn with Xp
uniformly distributed on the unit circle.

I We have, ∑
n≤T

Xn√
n � T ε

with very high probability



Lindelof Hypothesis

I Alternatively we can compute the so-called second moment,∫
|t|≤T

|ζ(1
2 + it)|2 ≈

∫
|t|≤T

∣∣∣ ∑
n≤T

1
n1/2+it

∣∣∣2dt ∼ T
∑
n≤T

1
n

I Which shows that for typical t

|ζ(1
2 + it)| � log T

I This is somewhat misleading though, because this bound is not
true for all t ∈ [T , 2T ]. It is too optimistic.



Consequences of the Lindelof Hypothesis
I If the Lindelof Hypothesis is true then we can approximate the
ζ function by short Dirichlet polynomials.

I We have, for σ > 1
2 and W a smooth compactly supported

function with W (0) = 1,

∑
n≤X

1
nσ+it W

( n
X
)

= 1
2πi

∫ 2+i∞

2−i∞
ζ(σ + it + w)W̃ (w)Xw dw

I Shifting contours to <s = 1
2 − σ we get

ζ(s) + 1
2πi

∫ 1
2−σ+i∞

1
2−σ−i∞

ζ(σ + it + w)W̃ (w)Xw dw

I On the Lindelof Hypothesis we can bound the integral by
�ε T εX 1/2−σ which is negligible as soon as X > T 10ε, say.



Consequence of the Lindelof Hypothesis

Theorem
Assume the Lindelof Hypothesis. Let ε > 0 be given. Then, for
σ > 1

2 and t ∈ [T , 2T ],

ζ(σ + it) =
∑

n≤T ε

1
n1/2+it + O(T−(σ−1/2)ε).

I In other words on the Lindelof Hypothesis we can compute the
Riemann zeta-function off the critical line in time O(T ε).



Consequences of the Lindelof Hypothesis

I Another essentially similar consequence of the Lindelof
Hypothesis is the bound∑

n≤N
nit �ε |t|ε

√
N

I We will later see what these bounds have to say about the
zeros of the Riemann ζ-function.

I In particular we will discuss so called zero-density theorems:
theorems that establish bounds for the number of points β + iγ
with

ζ(β + iγ) = 0 , β > σ , |γ| ≤ T .

I The trivial bound is � T log T since this is the total number
of zeros with |γ| ≤ T .



Mollifiers
I A mollifier is a finite Dirichlet polynomial with the property

that “most of the time”

ζ(s)M(s) ≈ 1

I Since
1
ζ(s) =

∑
n≥1

µ(n)
ns

where µ is the Mobius function, it is natural to expect that∑
n≤N

µ(n)
ns

should be a mollifier.

I By Mobius inversion

ζ(s)M(s) = 1 +
∑
n>N

a(n)
ns

where |a(n)| ≤ d(n)�ε nε.



Mollifiers
I We are interested in bounding

N(σ; T ) :=
{
β + iγ : ζ(β + iγ) = 0, β > σ, |γ| ≤ T

}
.

I Trivially

N(σ; T ) ≤ 1
ε

∑
β>σ−ε
|γ|≤T
ζ(β+iγ)

(β − 1
2)

≤ 1
ε

∑
β>σ−ε
|γ|≤T

(Mζ)(β+iγ)=0

(β − 1
2)

I By Littewood’s formula (an analogue of Jensen formula for
rectangles) the above is

≤ 1
ε

∫
|t|≤T

log |(ζM)(σ − ε+ it)|dt



Mollifiers

I By Jensen’s inequality∫
|t|≤T

log |(Mζ)(σ+it)|dt ≤ T log
( 1
2T

∫
|t|≤T

|(ζM)(σ+it)|2dt
)

I One typically simply computes the above second moment, and
this is the “classical” way of obtaining a zero-density estimate.

I For instance if we M is a mollifier of length X , then we expect

1
2T

∫
|t|≤T

|(ζM)(σ+it)|2dt = 1+O
( ∑

n>X

1
n2σ

)
= 1+O(X−(2σ−1))



Mollifiers

I And this would lead to a zero density theorem of the form,

N(σ,T )� TX−(2σ−1)

I In practice it is fairly easy to compute such expressions with
X = T 1/2 and this leads to a standard zero-density bound of
the form

N(σ,T )� 1
ε
· TX−(2σ−1+2ε)

I A reasonable choise of ε is 1/ log T and this would then give

� T 1−(σ−1
2 ) log T


