Correcting the subconvexity bound

> We want to obtain the bound
Yt TV
n~T
with t ~ T.
> We split into short intervals
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Overall strategy

> Whenever , )
a
awe ~ o+ Oe)
with H? < g < H?9 we will exhibit cancellations in the short
sum
» Whenever ; 1
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with g < H® we will bound the sum trivially, but we will show
there are few such intervals [N, N + H].



Correcting the subconvexity bound

» Usually
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helo,H] hel0,H]
for any 6(h) with 6’(h) < 1/H for h € [0, H].
> We approximate
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with (a,9) =1 and ¢ < Q := H>7% and |9n] < 1/(¢Q).

> As long as g > H% we have |0y| < 1/H? and this means that
e(h?6) can be ignored for g > H°.



Correcting the subconvexity bound

» Therefore for g > H® we have

» Furthermore given g we can find a b such that,

t b

with |0] < 1/q.
» So we get that the short sum is
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with |0 <1/q.



Correcting the subconvexity

> We now apply Poisson summation:
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where
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» In particular bounding the right hand side trivially we get
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since g < H?>79.



Correcting the subconvexity bound

» This gives the first claim: that if
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with H? < g < H?7% then the short sum over [N, N + H] is
bounded by H1~9/2.

» It remains to show that the number of intervals [N, N + H] with
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and g < H is small.



Correcting the subconvexity bound
» We wish to show,
VT

kEﬁl(aq < e ol < =) < HT

for some 1 > 0.

» We can drop the 3 by using the union bound. Bounding the
above by
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» In particular it's enough to show
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for some 1 > 0.



Correcting the subconvexity bound

P As usual we expand into a trigonometric series
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» The main term is
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for some 1 > 0, provided that J is sufficiently small.
» The error term is

Z Z <2k2H2)

\EISH2 S kn/T/H



Correcting the subconvexity bound

» We apply Poisson summation in k. The new length is
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> If H is sufficiently small power of T then this is < 1. This
means that only the central term survives and therefore the
behavior of the sum is exactly the sum as the integral
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by the first derivative test.

» This is exactly the same bound as we obtained from the main
term.



Correcting the subconvexity bound
> To summarize: we split the sum
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into ﬁ/H intervals of length H.

» If on the interval [N, N + H| we have,
t a 1
v~ o+ Olip)
for some H® < H279, then we can bound the contribution of
this interval by H1=%/2,

» The number of remaining intervals is (provided that H is
choosen a small power),
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and this is less than v/ TH~1=" for some 7 > 0 provided that §
is sufficiently small.
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Correcting the subconvexity

» These two together give us a subconvex bound for the
Riemann zeta-function.

» If you go through the proof carefully you see that we also get
an algorithm for computing the Riemann zeta function in time
O(T/2-9) for some & > 0.



Consequences of bounds for ((s)

» \We established a subconvex bound
(3 + i) < (14 e
for some § > 0.
P In reality we expect
C(5 + it)] < (L+ [t])°
for any given € > 0.

» This is called the Lindelof Hypothesis and is the strongest
bound that one can hope for (at the scale of power-savings).



Lindelof Hypothesis

P It is easy to motivate the Lindelof Hypothesis: We can write
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n<T

» Since the frequency p' are uncorrelated it is reasonable to
think of n as a random multiplicative function X, with X,
uniformly distributed on the unit circle.

> We have,
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with very high probability



Lindelof Hypothesis

» Alternatively we can compute the so-called second moment,
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» Which shows that for typical t

€A +it) < log T

» This is somewhat misleading though, because this bound is not
true for all t € [T,2T]. It is too optimistic.



Consequences of the Lindelof Hypothesis

» If the Lindelof Hypothesis is true then we can approximate the
¢ function by short Dirichlet polynomials.

» We have, for o > % and W a smooth compactly supported
function with W(0) =1,
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» Shifting contours to s = % — o we get
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» On the Lindelof Hypothesis we can bound the integral by
<. TeXY/2=7 which is negligible as soon as X > T say.



Consequence of the Lindelof Hypothesis

Theorem
Assume the Lindelof Hypothesis. Let € > 0 be given. Then, for
o>3%andte[T,2T),
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» In other words on the Lindelof Hypothesis we can compute the
Riemann zeta-function off the critical line in time O(T*¢).



Consequences of the Lindelof Hypothesis

» Another essentially similar consequence of the Lindelof
Hypothesis is the bound

ot < |tFVN

n<N

> We will later see what these bounds have to say about the
zeros of the Riemann (-function.

» In particular we will discuss so called zero-density theorems:
theorems that establish bounds for the number of points 3 + iy
with

(B+iv)=0,8>0, 7 <T.

» The trivial bound is < T log T since this is the total number
of zeros with |y| < T.



Mollifiers

» A mollifier is a finite Dirichlet polynomial with the property
that “most of the time”

((s)M(s) ~ 1

» Since
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where p is the Mobius function, it is natural to expect that
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should be a mollifier.

» By Mobius inversion

where |a(n)| < d(n) <. n°.



Mollifiers

» We are interested in bounding

N(oiT) = {B+iv: C(B+i7) =0,8>0,h| < T}.

P Trivially
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(MC)(B+iv)=0

» By Littewood's formula (an analogue of Jensen formula for
rectangles) the above is
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Mollifiers

> By Jensen's inequality

/ log |(MC)(o-+it)|dt < T'log ( !
t<T 2
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» One typically simply computes the above second moment, and
this is the "classical” way of obtaining a zero-density estimate.

» For instance if we M is a mollifier of length X, then we expect
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Mollifiers

» And this would lead to a zero density theorem of the form,

N(o, T) < TX~ (07D
» In practice it is fairly easy to compute such expressions with
X = T1/2 and this leads to a standard zero-density bound of
the form 1
N(o, T) < = - TX(20-1+2)
€

» A reasonable choise of ¢ is 1/log T and this would then give

1
< T3 log T



