Correcting the subconvexity bound

- We want to obtain the bound

$$
\sum_{n \sim \sqrt{T}} n^{i t} \ll T^{1 / 2-\eta}
$$

with $t \sim T$.

- We split into short intervals

$$
\begin{aligned}
& \quad \sum_{n \in\left[N_{k}, N_{k}+H\right]} n^{i t}=N^{i t} \sum_{h \in[0, H]} e\left(\frac{h t}{N}-h^{2} \cdot \frac{t}{2 N^{2}}+\ldots\right) \\
& \text { with } N_{k}=k H \sim \sqrt{T} .
\end{aligned}
$$

Overall strategy

- Whenever

$$
\frac{t}{2 N^{2}} \approx \frac{a}{q}+O\left(\frac{1}{H^{2}}\right)
$$

with $H^{\delta}<q<H^{2-\delta}$ we will exhibit cancellations in the short sum

- Whenever

$$
\frac{t}{2 N^{2}} \approx \frac{a}{q}+O\left(\frac{1}{H^{2-\delta}}\right)
$$

with $q \leq H^{\delta}$ we will bound the sum trivially, but we will show there are few such intervals $[N, N+H]$.

Correcting the subconvexity bound

- Usually

$$
\sum_{h \in[0, H]} e(\varphi(h)+\theta(h)) \approx \sum_{h \in[0, H]} e(\varphi(h))
$$

for any $\theta(h)$ with $\theta^{\prime}(h) \ll 1 / H$ for $h \in[0, H]$.

- We approximate

$$
\frac{t}{2 N^{2}}=\frac{a}{q}+\theta_{N}
$$

with $(a, q)=1$ and $q \leq Q:=H^{2-\delta}$ and $\left|\theta_{N}\right| \leq 1 /(q Q)$.

- As long as $q>H^{\delta}$ we have $\left|\theta_{N}\right| \leq 1 / H^{2}$ and this means that $e\left(h^{2} \theta\right)$ can be ignored for $q>H^{\delta}$.

Correcting the subconvexity bound

- Therefore for $q>H^{\delta}$ we have

$$
\sum_{h \in[0, H]} e\left(\frac{h t}{N}-h^{2}\left(\frac{t}{2 N^{2}}\right)\right) \approx \sum_{h \in[0, H]} e\left(\frac{h t}{N}-\frac{h^{2} a}{q}\right)
$$

- Furthermore given q we can find a b such that,

$$
\frac{t}{N}=\frac{b}{q}+\theta \quad(\bmod 1)
$$

with $|\theta| \leq 1 / q$.

- So we get that the short sum is

$$
\sum_{h \in[0, H]} e\left(\frac{h b}{q}-\frac{h^{2} a}{q}+h \theta\right)
$$

with $|\theta| \leq 1 / q$.

Correcting the subconvexity

- We now apply Poisson summation:

$$
\sum_{h \in[0, H]} e\left(\frac{h b}{q}-\frac{h^{2} a}{q}+h \theta\right) \approx \frac{1}{q} \sum_{|\ell| \leq q / H} S(b-\ell, a) \mathbf{1}\left(H\left(\theta-\frac{\ell}{q}\right)\right)
$$

where

$$
S(a-\ell, b)=\sum_{x(\bmod q)} e\left(\frac{x(a-\ell)}{q}+\frac{x^{2} b}{q}\right) \ll \sqrt{q}
$$

- In particular bounding the right hand side trivially we get

$$
\sum_{h \in[0, H]} e\left(\frac{h b}{q}-\frac{h^{2} a}{q}+h \theta\right) \ll \frac{\sqrt{q}}{H} \leq H^{1-\delta / 2}
$$

since $q \leq H^{2-\delta}$.

Correcting the subconvexity bound

- This gives the first claim: that if

$$
\frac{t}{2 N^{2}}=\frac{a}{q}+O\left(\frac{1}{H^{2}}\right)
$$

with $H^{\delta} \leq q \leq H^{2-\delta}$ then the short sum over $[N, N+H]$ is bounded by $H^{1-\delta / 2}$.

- It remains to show that the number of intervals $[\mathrm{N}, \mathrm{N}+\mathrm{H}]$ with

$$
\frac{t}{2 N^{2}}=\frac{a}{q}+O\left(\frac{1}{H^{2-\delta}}\right)
$$

and $q \leq H^{\delta}$ is small.

Correcting the subconvexity bound

- We wish to show,

$$
\sum_{k H \sim \sqrt{T}} \mathbf{1}\left(\exists q \leq H^{\delta}:\left\|\frac{t}{2(k H)^{2}}-\frac{a}{q}\right\| \leq \frac{1}{H^{2-\delta}}\right) \ll \frac{\sqrt{T}}{H} \cdot H^{-\eta}
$$

for some $\eta>0$.

- We can drop the \exists by using the union bound. Bounding the above by

$$
\sum_{\substack{q \leq H^{\delta} \\(a, q)=1}} \sum_{k H \sim \sqrt{T}} \mathbf{1}\left(\left\|\frac{t}{2(k H)^{2}}-\frac{a}{q}\right\| \leq \frac{1}{H^{2-\delta}}\right)
$$

- In particular it's enough to show

$$
\sum_{k H \sim \sqrt{T}} 1\left(\left\|\frac{t}{2(k H)^{2}}-\frac{a}{q}\right\| \leq \frac{1}{H^{2-\delta}}\right) \ll \frac{\sqrt{T}}{H} H^{-2 \delta-\eta}
$$

for some $\eta>0$.

Correcting the subconvexity bound

- As usual we expand into a trigonometric series

$$
\mathbf{1}\left(\left\|\frac{t}{2(k H)^{2}}-\frac{a}{q}\right\| \leq \frac{1}{H^{2-\delta}}\right) \approx \frac{1}{H^{2-\delta}}+\sum_{0<|\ell| \leq H^{2-\delta}} e\left(\frac{\ell t}{2(k H)^{2}}\right)
$$

- The main term is

$$
\frac{\sqrt{T}}{H^{3-\delta}} \ll \frac{\sqrt{T}}{H} H^{-2 \delta-\eta}
$$

for some $\eta>0$, provided that δ is sufficiently small.

- The error term is

$$
\frac{1}{H^{2-\delta}} \sum_{|\ell| \leq H^{2-\delta}} \sum_{k \sim \sqrt{T} / H} e\left(\frac{\ell t}{2 k^{2} H^{2}}\right)
$$

Correcting the subconvexity bound

- We apply Poisson summation in k. The new length is

$$
\varphi^{\prime}\left(\frac{\sqrt{T}}{H}\right) \approx \frac{H^{2-\delta} T}{(\sqrt{T} / H)^{3} H^{2}} \approx \frac{H^{3-\delta}}{\sqrt{T}}
$$

- If H is sufficiently small power of T then this is <1. This means that only the central term survives and therefore the behavior of the sum is exactly the sum as the integral

$$
\int_{x \sim \sqrt{T} / H} e\left(\frac{\ell t}{2 x^{2} H^{2}}\right) d x \ll \frac{\sqrt{T}}{H^{3-\delta}}
$$

by the first derivative test.

- This is exactly the same bound as we obtained from the main term.

Correcting the subconvexity bound

- To summarize: we split the sum

$$
\sum_{n \sim \sqrt{T}} n^{i t}
$$

into \sqrt{T} / H intervals of length H.

- If on the interval $[N, N+H]$ we have,

$$
\frac{t}{2 N^{2}}=\frac{a}{q}+O\left(\frac{1}{H^{2}}\right)
$$

for some $H^{\delta} \leq H^{2-\delta}$, then we can bound the contribution of this interval by $H^{1-\delta / 2}$.

- The number of remaining intervals is (provided that H is choosen a small power),

$$
\ll \frac{\sqrt{T}}{H^{3-\delta}} H^{2 \delta}
$$

and this is less than $\sqrt{T} H^{-1-\eta}$ for some $\eta>0$ provided that δ is sufficiently small.

Correcting the subconvexity

- These two together give us a subconvex bound for the Riemann zeta-function.
- If you go through the proof carefully you see that we also get an algorithm for computing the Riemann zeta function in time $O\left(T^{1 / 2-\delta}\right)$ for some $\delta>0$.

Consequences of bounds for $\zeta(s)$

- We established a subconvex bound

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll(1+|t|)^{1 / 4-\delta}
$$

for some $\delta>0$.

- In reality we expect

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right|<_{\varepsilon}(1+|t|)^{\varepsilon}
$$

for any given $\varepsilon>0$.

- This is called the Lindelof Hypothesis and is the strongest bound that one can hope for (at the scale of power-savings).

Lindelof Hypothesis

- It is easy to motivate the Lindelof Hypothesis: We can write

$$
\zeta\left(\frac{1}{2}+i t\right) \approx \sum_{n \leq T} \frac{1}{n^{1 / 2+i t}}
$$

- Since the frequency $p^{i t}$ are uncorrelated it is reasonable to think of $n^{i t}$ as a random multiplicative function X_{n} with X_{p} uniformly distributed on the unit circle.
- We have,

$$
\sum_{n \leq T} \frac{X_{n}}{\sqrt{n}} \ll T^{\varepsilon}
$$

with very high probability

Lindelof Hypothesis

- Alternatively we can compute the so-called second moment,

$$
\int_{|t| \leq T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \approx \int_{|t| \leq T}\left|\sum_{n \leq T} \frac{1}{n^{1 / 2+i t}}\right|^{2} d t \sim T \sum_{n \leq T} \frac{1}{n}
$$

- Which shows that for typical t

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll \log T
$$

- This is somewhat misleading though, because this bound is not true for all $t \in[T, 2 T]$. It is too optimistic.

Consequences of the Lindelof Hypothesis

- If the Lindelof Hypothesis is true then we can approximate the ζ function by short Dirichlet polynomials.
- We have, for $\sigma>\frac{1}{2}$ and W a smooth compactly supported function with $W(0)=1$,

$$
\sum_{n \leq X} \frac{1}{n^{\sigma+i t}} W\left(\frac{n}{X}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \zeta(\sigma+i t+w) \widetilde{W}(w) X^{w} d w
$$

- Shifting contours to $\Re s=\frac{1}{2}-\sigma$ we get

$$
\zeta(s)+\frac{1}{2 \pi i} \int_{\frac{1}{2}-\sigma-i \infty}^{\frac{1}{2}-\sigma+i \infty} \zeta(\sigma+i t+w) \widetilde{W}(w) X^{w} d w
$$

- On the Lindelof Hypothesis we can bound the integral by $\ll \varepsilon T^{\varepsilon} X^{1 / 2-\sigma}$ which is negligible as soon as $X>T^{10 \varepsilon}$, say.

Consequence of the Lindelof Hypothesis

Theorem

Assume the Lindelof Hypothesis. Let $\varepsilon>0$ be given. Then, for $\sigma>\frac{1}{2}$ and $t \in[T, 2 T]$,

$$
\zeta(\sigma+i t)=\sum_{n \leq T^{\varepsilon}} \frac{1}{n^{1 / 2+i t}}+O\left(T^{-(\sigma-1 / 2) \varepsilon}\right)
$$

- In other words on the Lindelof Hypothesis we can compute the Riemann zeta-function off the critical line in time $O\left(T^{\varepsilon}\right)$.

Consequences of the Lindelof Hypothesis

- Another essentially similar consequence of the Lindelof Hypothesis is the bound

$$
\sum_{n \leq N} n^{i t} \ll \varepsilon|t|^{\varepsilon} \sqrt{N}
$$

- We will later see what these bounds have to say about the zeros of the Riemann ζ-function.
- In particular we will discuss so called zero-density theorems: theorems that establish bounds for the number of points $\beta+i \gamma$ with

$$
\zeta(\beta+i \gamma)=0, \beta>\sigma,|\gamma| \leq T
$$

- The trivial bound is $\ll T \log T$ since this is the total number of zeros with $|\gamma| \leq T$.

Mollifiers

- A mollifier is a finite Dirichlet polynomial with the property that "most of the time"

$$
\zeta(s) M(s) \approx 1
$$

- Since

$$
\frac{1}{\zeta(s)}=\sum_{n \geq 1} \frac{\mu(n)}{n^{s}}
$$

where μ is the Mobius function, it is natural to expect that

$$
\sum_{n \leq N} \frac{\mu(n)}{n^{s}}
$$

should be a mollifier.

- By Mobius inversion

$$
\zeta(s) M(s)=1+\sum_{n>N} \frac{a(n)}{n^{s}}
$$

where $|a(n)| \leq d(n) \ll_{\varepsilon} n^{\varepsilon}$.

Mollifiers

- We are interested in bounding

$$
N(\sigma ; T):=\{\beta+i \gamma: \zeta(\beta+i \gamma)=0, \beta>\sigma,|\gamma| \leq T\}
$$

- Trivially

$$
\begin{aligned}
N(\sigma ; T) & \leq \frac{1}{\varepsilon} \sum_{\substack{\beta>\sigma-\varepsilon \\
\gamma \mid \leq T \\
\zeta(\beta+i \gamma)}}\left(\beta-\frac{1}{2}\right) \\
& \leq \frac{1}{\varepsilon} \sum_{\substack{\beta>\sigma-\varepsilon \\
|\gamma| \leq T \\
(M \zeta)(\beta+i \gamma)=0}}\left(\beta-\frac{1}{2}\right)
\end{aligned}
$$

- By Littewood's formula (an analogue of Jensen formula for rectangles) the above is

$$
\leq \frac{1}{\varepsilon} \int_{|t| \leq T} \log |(\zeta M)(\sigma-\varepsilon+i t)| d t
$$

Mollifiers

- By Jensen's inequality

$$
\int_{|t| \leq T} \log |(M \zeta)(\sigma+i t)| d t \leq T \log \left(\frac{1}{2 T} \int_{|t| \leq T}|(\zeta M)(\sigma+i t)|^{2} d t\right)
$$

- One typically simply computes the above second moment, and this is the "classical" way of obtaining a zero-density estimate.
- For instance if we M is a mollifier of length X, then we expect

$$
\frac{1}{2 T} \int_{|t| \leq T}|(\zeta M)(\sigma+i t)|^{2} d t=1+O\left(\sum_{n>X} \frac{1}{n^{2 \sigma}}\right)=1+O\left(X^{-(2 \sigma-1)}\right)
$$

Mollifiers

- And this would lead to a zero density theorem of the form,

$$
N(\sigma, T) \ll T X^{-(2 \sigma-1)}
$$

- In practice it is fairly easy to compute such expressions with $X=T^{1 / 2}$ and this leads to a standard zero-density bound of the form

$$
N(\sigma, T) \ll \frac{1}{\varepsilon} \cdot T X^{-(2 \sigma-1+2 \varepsilon)}
$$

- A reasonable choise of ε is $1 / \log T$ and this would then give

$$
\ll T^{1-\left(\sigma-\frac{1}{2}\right)} \log T
$$

