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Plan of the talk:

I Introduction to character sums

I Motivation

I Pólya–Vinogradov inequality

I Preview of future lectures



Introduction

Throughout these lectures: Let r be a large prime, and χ a
Dirichlet character mod r .

In other words:

I χ : N→ C;

I χ(n) = 0 if and only if r |n;

I χ is periodic mod r , i.e. χ(n + r) = χ(n) for all n;

I χ is totally multiplicative, i.e. χ(nm) = χ(n)χ(m) for all n,m.

There are φ(r) = r − 1 such functions χ, including the principal
character χ0(n) = 1(n,r)=1 and the Legendre symbol

(n
r

)
.



We always have χ(1) = 1, and |χ(n)| ∈ {0, 1}.

Dirichlet characters have two important orthogonality properties:

I 1
r−1

∑r
n=1 χ(n) = 1χ=χ0 .

(This is fairly easy to prove, by multiplying LHS by χ(n) for
some n with χ(n) 6= 0, 1.)

I 1
r−1

∑
χ mod r χ(n) = 1n≡1 mod r .

(This is a bit harder to prove, I don’t know an argument that
doesn’t involve the explicit construction of the characters χ.)



Thanks to the second orthogonality property, we can use Dirichlet
characters to detect behaviour in arithmetic progressions.

For example, if (an) is some complex sequence then∑
n≤x ,

n≡1 mod r

an =
∑
n≤x

an
1

r − 1

∑
χ mod r

χ(n)

=
1

r − 1

∑
χ mod r

∑
n≤x

anχ(n)

=
1

r − 1

∑
n≤x

anχ0(n) +
1

r − 1

∑
χ mod r ,
χ 6=χ0

∑
n≤x

anχ(n).



Some motivation

We might want to understand the distribution of primes in
arithmetic progressions.

Thanks to the identity Λ(n) = −
∑

d |n µ(d) log d (or more
sophisticated versions like Vaughan’s Identity), this is more or less
equivalent to investigating the Möbius function µ(n) in arithmetic
progressions.

Recall:

µ(n) :=

{
0 if n has any repeated prime factors,

(−1)ω(n) if n has ω(n) prime factors, all distinct.

For example, µ(1) = µ(6) = 1, and µ(2) = µ(3) = µ(5) = −1, and
µ(4) = 0.



We have∑
n≤x ,

n≡1 mod r

µ(n) =
1

r − 1

∑
n≤x

µ(n)χ0(n) +
1

r − 1

∑
χ mod r ,
χ 6=χ0

∑
n≤x

µ(n)χ(n).

The Prime Number Theorem implies that∑
n≤x

µ(n)χ0(n) =
∑
n≤x

µ(n)−
∑
n≤x ,
r |n

µ(n) = o(x).

We expect that
∑

n≤x µ(n)χ(n) = o(x) for all non-principal χ as
well (provided x isn’t tiny compared with r).
“Can a Dirichlet character χ(n) pretend to be µ(n)?”
For real Dirichlet characters: closely connected to the Siegel zeros
problem.



Before grappling with µ(n), we might just try to understand the
behaviour of

∑
n≤x χ(n). By periodicity mod r , we only need to

investigate 1 ≤ x ≤ r .

For the principal character χ0(n) = 1(n,r)=1, this is an easy
problem.

For χ 6= χ0, we always have the trivial bound

|
∑
n≤x

χ(n)| ≤
∑
n≤x
|χ(n)| ≤ x ,

but we generally expect this to be far from the truth.



Define

n(r) := min{1 ≤ n ≤ r : n is a quadratic non-residue mod r},

the least quadratic non-residue mod r .

Conjecture 1 (Vinogradov)

For any fixed ε > 0, we have n(r)�ε r
ε.

We expect (but cannot prove) that much more should be true:∑
n≤rε χ(n) = o(r ε) uniformly for all non-principal characters χ

mod r (including χ(n) =
(n
r

)
).



Pólya–Vinogradov inequality

Theorem 1 (Pólya–Vinogradov inequality, 1918)

Uniformly for all large primes r , all χ 6= χ0 mod r , and all x , we
have

|
∑
n≤x

χ(n)| �
√
r log r .

This is a fundamental result, as is the method of proof.

The Pólya–Vinogradov inequality immediately implies that if
x√

r log r
→∞, then

∑
n≤x χ(n) = o(x).



Our key tool in proving the Pólya–Vinogradov inequality, and an
important tool in lectures 2 and 3, will be the Pólya Fourier
expansion (PFE): for any parameter K , we have∑
n≤x

χ(n) =
τ(χ)

2πi

∑
0<|k|≤K

χ(−k)

k
(e(kx/r)− 1) + O(1 +

r log r

K
),

where e(t) := e2πit is the complex exponential, and
τ(χ) :=

∑r
a=1 χ(a)e(a/r) is the Gauss sum corresponding to χ.

We will sketch the proof of the PFE (assuming a bit of standard
Fourier analysis), and then deduce Theorem 1.



For a fixed non-principal character χ mod r , we (temporarily)
define

S(t) = Sχ(t) :=
∑

1≤n≤tr
χ(n), 0 ≤ t ≤ 1.

We have S(0) = 0 (trivially, empty sum), and
S(1) =

∑
1≤n≤r χ(n) = 0 using one of the orthogonality properties.

Next we compute the Fourier coefficients of the function S(t)
(thought of as a 1-periodic function on R):

Ŝ(k) :=

∫ 1

0
S(t)e(−kt)dt =

∑
1≤n≤r

χ(n)

∫ 1

n/r
e(−kt)dt, k ∈ Z.



When k = 0, we obviously have Ŝ(0) =
∑

1≤n≤r χ(n)(1− n
r ).

Using the fact that
∑

1≤n≤r χ(n) = 0, we can simplify this:

Ŝ(0) = −1
r

∑
1≤n≤r χ(n)n.

When k 6= 0, we get

Ŝ(k) =
∑

1≤n≤r
χ(n)

[
e(−kt)

−2πik

]1
n/r

=
∑

1≤n≤r
χ(n)

e(−kn/r)− 1

2πik
.

Again, we can simplify this:

Ŝ(k) =
1

2πik

∑
1≤n≤r

χ(n)e(−kn/r).



Now we shall exploit the special structure of Dirichlet
characters/residues mod r .

If k is coprime to r , then

χ(−k)τ(χ) = χ(−k)
r∑

a=1

χ(a)e(a/r) =
r∑

a=1

χ(−a/k)e(a/r)

=
r∑

a=1

χ(a)e(−ak/r),

because replacing a by −ak just permutes the residue classes mod
r . So we get

Ŝ(k) = τ(χ)
χ(−k)

2πik
.

This is still true when r |k , because then both sides equal zero.



Finally, (a quantitative form of) Fourier inversion gives

S(t) =
S(t+) + S(t−)

2
+ O(1) =

∑
|k|≤K

Ŝ(k)e(kt) + O(1 +
r log r

K
)

= −1

r

∑
1≤n≤r

χ(n)n +
τ(χ)

2πi

∑
0<|k|≤K

χ(−k)

k
e(kt) + O(1 +

r log r

K
).

(The r in the error term is a bound on the variation of S(t).)

Since S(0) = 0, we can get rid of the first sum by subtracting S(0)
from both sides:

S(t) =
τ(χ)

2πi

∑
0<|k|≤K

χ(−k)

k
(e(kt)− 1) + O(1 +

r log r

K
).

Setting t = x/r yields the PFE.



Lemma 1
For all primes r and all χ 6= χ0 mod r , we have |τ(χ)| =

√
r .

Proof of Lemma 1.
The key point, as we already saw, is that

χ(n)τ(χ) = χ(n)
r∑

a=1

χ(a)e(a/r) =
r∑

a=1

χ(a)e(an/r)

for all n (LHS=RHS=0 if r |n). And |χ(n)| = 1 for n coprime to r ,
so

(r − 1)|τ(χ)|2 =
r∑

n=1

|
r∑

a=1

χ(a)e(an/r)|2 =
r∑

a,b=1

χ(a)χ(b)r1a=b.

The RHS is equal to r(r − 1).



Proof of the Pólya–Vinogradov inequality.

We can choose K = r , say, in the PFE. Then simply applying the
triangle inequality,

|
∑
n≤x

χ(n)| =

√
r

2π
|
∑

0<|k|≤r

χ(−k)

k
(e(kx/r)− 1)|+ O(1 + log r)

≤
√
r

2π

∑
0<|k|≤r

2

|k |
+ O(log r)

�
√
r log r .



Further developments

I Burgess bound (1957, 1962): for χ 6= χ0 we have
|
∑

n≤x χ(n)| = o(x) provided x ≥ r1/4+o(1).

I This directly implies that the least quadratic non-residue
n(r) ≤ r1/4+o(1).

I With some combinatorial trickery, one can in fact deduce the
stronger (best known) result that n(r) ≤ r1/(4

√
e)+o(1).

I Better character sum estimates are possible for special
non-prime moduli r (e.g. smooth/friable r).

I Assuming the Generalised Riemann Hypothesis is true,
Granville and Soundararajan (2001) showed that
|
∑

n≤x χ(n)| = o(x) provided log x
log log r →∞.

(cf. Lecture 3)



Key points to take away:

I The PFE encodes the periodicity of χ(n) mod r . We need to
use it to understand the behaviour of χ(n) properly.

I We have (e(kx/r)− 1) ≈ 2πikx
r when |k | ≤ r/x . So the PFE

implies that∑
n≤x

χ(n) ≈ τ(χ)

2πi

∑
0<|k|≤r/x

χ(−k)

k

2πikx

r
+ O(log r) +

+
τ(χ)

2πi

∑
r/x<|k|≤r

χ(−k)

k
(e(kx/r)− 1)

≈ τ(χ)x

r

∑
0<|k|≤r/x

χ(−k).

I In particular, |
∑

n≤x χ(n)| ≈ x√
r
|
∑

k≤r/x χ(k)|.



I So there is a “symmetry” between character sums up to x and
up to r/x :

|
∑
n≤x

χ(n)| ≈ x√
r
|
∑

k≤r/x

χ(k)|,

at least for most χ and/or most x .

I In particular, |
∑

n≤x χ(n)| ≈
√
x is roughly equivalent to

|
∑

n≤r/x χ(n)| ≈
√

r/x .

I This symmetry is sometimes called the “Fourier flip”, or a
“reflection principle”. It is also closely related to the
functional equation of Dirichlet L-functions.



Preview of Lectures 2–4

Main Theme: We will combine the PFE with a random
multiplicative function model to understand various aspects of
character sums.

I Lecture 2: distribution of max1≤x≤r |
∑

n≤x χ(n)| as χ varies.

I Lecture 3: distribution of character sums over moving
intervals.

I Lecture 4: distribution of
∑

n≤x χ(n) as χ varies.


