Riemann ζ

- In this lectures I will discuss the basic theory of the Riemann ζ function.
- The plan for the four lectures is as follows:

1. Main properties
2. Computing and bounding the Riemann zeta-function
3. Zero-density theorems and mollifiers
4. The finer aspects

The Riemann ζ-function

- The Riemann ζ function is defined in $\Re s>1$ as

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

- This defines an analytic function in the region $\Re s>1$.
- Because every integer n can be factored uniquely into prime factors we can also write,

$$
\zeta(s)=\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\ldots\right)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

where the product is taken over all primes p.

Infinitude of primes

- The two representations

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)
$$

can be used to obtain the divergence of the series

$$
\sum_{p} \frac{1}{p}
$$

- Indeed take $s>1$ to be real. Then,

$$
\sum_{n \geq 1} \frac{1}{n^{s}}=\int_{1}^{\infty} x^{-s} d x+O(1)=\frac{1}{s-1}+O(1)
$$

- On the other hand

$$
\log \prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=\sum_{p} \frac{1}{p^{s}}+O(1)
$$

Infinitude of primes

- Putting these two together we conclude

$$
\sum_{p} \frac{1}{p^{s}}=\log \left(\frac{1}{s-1}+O(1)\right)+O(1)
$$

- Which gives the divergence of $\sum_{p} \frac{1}{p}$.
- Taking $s=1+\frac{1}{\log x}$ suggests that

$$
\sum_{p \leq x} \frac{1}{p} \approx \sum_{p} \frac{1}{p^{s}}=\log \log x+O(1)
$$

- With more work this can be established.
- Incidentally we can also get the infinitude of the primes from

$$
\prod_{p}\left(1-\frac{1}{p^{2}}\right)^{-1}=\sum_{n \geq 1} \frac{1}{n^{s}}=\frac{\pi^{2}}{6} \notin \mathbb{Q}
$$

Analytic continuation

- It is clear that there is content in playing these two representations against each other.
- A natural step further is to try to analytically continue the Riemann zeta-function to the whole complex plane.
- Notice that,

$$
\Gamma(s) \frac{1}{n^{s}}=\int_{0}^{\infty} e^{-n x} x^{s-1} d x
$$

- Summing this over $n \geq 1$ in $\Re s>1$ we get

$$
\Gamma(s) \zeta(s)=\int_{0}^{\infty}\left(\sum_{n \geq 1} e^{-n x}\right) x^{s-1} d x=\int_{0}^{\infty} \frac{e^{-x}}{1-e^{-x}} \cdot x^{s-1} d x
$$

Analytic continuation

- It therefore remains to analytically continue

$$
\left(\int_{0}^{1}+\int_{1}^{\infty}\right) \frac{e^{-x}}{1-e^{-x}} x^{s-1} d x=
$$

to the whole complex plane.

- In the integral over $x \in[1, \infty)$ we simply integrate by parts repeatedly. This gives a meromorphic continuation to $\Re s>-A$ for any given $A>0$.
- In the integral over $x \in[0,1)$ we expand $\frac{e^{-x}}{1-e^{-x}}$ into a Taylor series and obtain the requisite meromorphic continuation to $\Re s>-A$ for any given $A>0$.
- The only possible poles are at $s \in\{1,0,-1,-2, \ldots\}$ and by being careful we can show that only the pole at $s=1$ actually exists.

The explicit formula

- Since $\zeta(s)$ admits an meromorphic continuation to the whole complex plane \mathbb{C} so does

$$
-\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}
$$

where

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

- Can we exploit this to say something deeper about the distribution of prime numbers?

Mellin transforms

- We make a small aside on Mellin transforms
- Let W a Schwartz function, compactly supported in $(0, \infty)$.
- The Mellin transform,

$$
\widetilde{W}(x)=\int_{0}^{\infty} W(x) x^{s-1} d x
$$

is an entire function such that $W(\sigma+i t)<_{\sigma, A}(1+|t|)^{-A}$ for any given A and any σ in a fixed strip.

- We also have the inverse Mellin transform

$$
W(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+\infty} \widetilde{W}(s) x^{-s} d x
$$

- These are multiplicative analogues of the usual Fourier transform (or in this context more precisely Laplace transform)

The explicit formula

- By Mellin inversion we have,

$$
W\left(\frac{n}{x}\right)=\frac{1}{2 \pi} \int_{2-i \infty}^{2+i \infty} \widetilde{W}(s)\left(\frac{x}{n}\right)^{s} d x
$$

- Summing over n with weights $\Lambda(n)$ we get

$$
\sum_{n \geq 1} \Lambda(n) W\left(\frac{n}{x}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}\left(-\frac{\zeta^{\prime}}{\zeta}(s)\right) \widetilde{W}(s) x^{s} d s
$$

- Let's take for granted that $\frac{\zeta^{\prime}}{\zeta}(s) \ll(1+|s|)^{A}$ for some fixed constant $A>0$. We will show this later.
- If that is the case then we can shift the contour from the line $2+i \mathbb{R}$ to the line $-\varepsilon+i \mathbb{R}$. When doing so we collect residues from the poles of ζ^{\prime} / ζ.

The explicit formula

- Doing so gives us the explicit formula

$$
\sum_{n \geq 1} \wedge(n) W\left(\frac{n}{x}\right)=x+\sum_{\rho} x^{\rho} \widetilde{W}(\rho)
$$

where ρ goes over the zeros of the Riemann zeta function and The term x comes from the simple pole at $s=1$.

- This makes it clear that $\sum_{n \leq x} \Lambda(n) \sim x$ is equivalent to $\zeta(s)$ not having any zeros on $\Re s=1$.
- Let's W tend to the indicator function of $[0,1]$, then we get

$$
\sum_{n \leq x} \Lambda(n)=x+\sum_{\rho} \frac{x^{\rho}}{\rho}
$$

- This immediately shows that there are infinitely many zeros of $\zeta(s)$. The left-hand side is discontinuous, but if there were only finitely many zeros the right hand side would be continuous.

The explicit formula

- Furthermore if we believe that primes are "like a random sequence" then we would expect that

$$
\sum_{n \leq x} \Lambda(n) \approx x+O(\sqrt{x})
$$

- This together with the explicit formula suggests that all the zeros of $\zeta(s)$ are located in $\Re s \leq \frac{1}{2}$.
- However one cannot extract too much non-trivial information from the explicit formula. The explicit formula is the statement that zeros and primes are equivalent. But not much else.

Limitations of the explicit formula

- One good way of understanding the limitations of the explicit formula is to take the difference between the expression for x and $x+h$, getting

$$
\sum_{x \leq n \leq x+h} \Lambda(n)=h+\sum_{\rho} \frac{(x+h)^{\rho}-x^{\rho}}{\rho}
$$

- Roughly speaking

$$
\frac{(x+h)^{\rho}-x^{\rho}}{\rho} \approx \begin{cases}h x^{\rho-1} & \text { if }|\rho| \leq x / h \\ 0 & \text { otherwise }\end{cases}
$$

- So that

$$
\sum_{x<n<x+h} \Lambda(n) \approx h+h \sum_{|\rho| \leq x / h} x^{\rho-1}
$$

- So if we want to check whether n is prime that would require us to compute all the zeros up to height n.

Limitations

- Conversely if we wanted to know very precise information about zeros it would require a lot of information about primes.
- This is simply a form of Heisenberg's uncertainty principle for the Fourier transform.
- The explicit formula cannot give us simultaneously very precise information about the primes and the zeros. It's always either one or the other.
- Still the explicit formula is not useless:

1. There are algorithms that determine all the zeros of $\zeta(s)$ up to height T in time T (relying on the FFT).
2. By carefully balancing the explicit formula we get an algorithm for computing the number of primes up to x in time \sqrt{x}.

Further properties inside the complex plane

- We've seen so far that $\zeta(s)$ continue meromorphically to \mathbb{C}.
- Assuming that we can obtain bounds for $\frac{\zeta^{\prime}}{\zeta}(s)$ away from zeros this meromorphic continuation is useful and relates the behavior of the primes to the location of the zeros of $\zeta(s)$.
- We need therefore to better understand the behavior of $\zeta(s)$ inside the complex plane.

Properties inside the complex plane

- Note that so far everything that we used came from the meromorphic continuation and the Euler product.
- Besides the Euler product the second deep property that the Riemann zeta-function possesses is the functional equation: if we let

$$
\xi(s):=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

then

$$
\xi(s)=\xi(1-s) .
$$

What is the meaning of the functional equation

- Before sketching the proof of the functional equation, let me explain its meaning and consequences.
- The Euler product captures the fact that integers factor uniquely into prime numbers, i.e the multiplicative property of the integers
- The functional equation in turns captures the fact that integers form lattice, i.e the additive property of the integers. I will now explain why this is so.

Poisson summation

- We will show that the functional equation for the Riemann ζ function is equivalent to the Poisson summation formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \widehat{f}(n)
$$

which is valid for any Schwartz function f.

- A Poisson summation formula can hold only when there is an underlying (often quite hidden) lattice structure.
- In that sense the functional equation captures the fact that integers form a lattice.

Poisson summation

- Let me now quickly explain how this equivalence goes.
- In one direction if the Poisson summation formula holds then we specialize to $f(n)=e^{-n^{2} / x}$ for example, and we integrate both sides with respect to $\int_{0}^{\infty}(\ldots) x^{s-1} d x$. This gives the functional equation for $\zeta(s)$.
- We pick $f(n)=e^{-n^{2} / x}$ because it has nice transformation properties (in fact $\sum_{n \in \mathbb{Z}} e^{-n^{2} z}$ is an automorphic form). But pretty much any other choice would have worked too; it would have simply led to more convoluted calculations.

Poisson summation

- In the other direction assume f is such that $f(0)=0$ and f is even.
- We consider,

$$
\sum_{n \geq 1} f(n)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \widetilde{f}(s) \zeta(s) d s
$$

where

$$
\widetilde{f}(s)=\int_{0}^{\infty} f(x) x^{s-1} d x
$$

- We now shift contours to the line $\Re s=-\varepsilon$. Thus

$$
\sum_{n \geq 1} f(n)=\frac{1}{2 \pi i} \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} \widetilde{f}(s) \zeta(s) d s
$$

- We now apply the functional equation in the form,

$$
\zeta(s)=\pi^{s-1 / 2} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)} \zeta(1-s)
$$

Poisson summation

- We find that

$$
\sum_{n \geq 1} f(n)=\frac{1}{2 \pi i} \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} \tilde{f}(s) \pi^{s-1 / 2} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)} \zeta(1-s) d s
$$

- We make the change of variable $s \mapsto 1-s$. We then get,

$$
\frac{1}{2 \pi i} \int_{1+\varepsilon-i \infty}^{1+\varepsilon+i \infty} \tilde{f}(1-s) \pi^{1 / 2-s} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} \zeta(s) d s
$$

- We expand $\zeta(s)$ point-wise finding that the above is equal to

$$
\sum_{n \geq 1} f^{\star}(n)
$$

where

$$
f^{\star}(x):=\frac{1}{2 \pi i} \int_{1+\varepsilon-i \infty}^{1+\varepsilon+i \infty} \widetilde{f}(1-s) \pi^{1 / 2-s} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} x^{-s} d s
$$

Poisson summation

- Unsurprisingly one can show (using a version of Plancherel for Mellin transforms) that

$$
f^{\star}(x)=\int_{\mathbb{R}} f(y) \cos (2 \pi x y) d y
$$

- And thus we have obtained

$$
\sum_{n \geq 1} f(n)=\sum_{n \geq 1} \int_{\mathbb{R}} f(y) \cos (2 \pi n y) d y
$$

which is an equivalent form of Poisson summation formula for any function f such that $f(0)=0$ and f is even.

Consequences of the functional equation

- The functional equation has many important immediate consequences.
- First, there are no zeros in $\Re s<0$ except at $s=-k$ with $k \in \mathbb{Z}$.
- Second,

$$
\frac{\zeta^{\prime}}{\zeta}(s)=\frac{\zeta^{\prime}}{\zeta}(1-s)+O(\log t)
$$

In particular we have $\frac{\zeta^{\prime}}{\zeta}(s) \ll \log t$ in $\Re s<0$, justifying our previous assumption when deriving the explicit formula.

- Finally, we can trivially bound $\zeta(s)$ for $\Re s>1$ and thus the functional equation gives us bounds for $\zeta(s)$ in $\Re s<0$. Using convexity in complex analysis this gives us bounds for $\zeta(s)$ in the so-called critical strip $0<\Re s<1$.

Further consequences of the functional equation

- Another consequence of the functional equation is that

$$
\zeta\left(\frac{1}{2}+i t\right)=e^{-2 i \theta(t)} \zeta\left(\frac{1}{2}-i t\right)
$$

where

$$
e^{2 i \theta(t)}:=\pi^{i t} \frac{\Gamma\left(\frac{1}{4}-\frac{i t}{2}\right)}{\Gamma\left(\frac{1}{4}+\frac{i t}{2}\right)}
$$

- In particular this means that

$$
Z(t)=e^{-i \theta(t)} \zeta\left(\frac{1}{2}-i t\right) \in \mathbb{R}
$$

- No such normalization is known on any other line $\sigma+$ it with $\sigma \neq \frac{1}{2}$. This alones makes it much more likely for zeros of $\zeta(s)$ to occur on $\Re s=\frac{1}{2}$ since the function can be made real on this line and thus a zero comes simply from a sign change.

Further consequences of the functional equation

- In fact it is conjectured that the functional equation alone should be responsible for the claim that " 100% " of the zeros of the Riemann ζ function lie on the critical line.

Summary

- There are only two important properties of the Riemann zeta-function : the Euler product and the functional equation.
- Everything that we know about the Riemann zeta function comes from one or the other.
- Usually the Euler product is used when talking about the zeros of the Riemann zeta-function.
- Usually the functional equation is used when we are interested in bounding the size of the Riemann zeta-function in the strip.
- In Lecture 2 I will discuss the consequences of the functional equation
- In Lecture 3 I will discuss the consequences of the Euler product
- In Lecture 4 we will study the finer aspects of the behavior of the Riemann zeta-function

