
Riemann ζ

I In this lectures I will discuss the basic theory of the Riemann ζ
function.

I The plan for the four lectures is as follows:
1. Main properties

2. Computing and bounding the Riemann zeta-function

3. Zero-density theorems and mollifiers

4. The finer aspects



The Riemann ζ-function

I The Riemann ζ function is defined in <s > 1 as

ζ(s) :=
∑
n≥1

1
ns .

I This defines an analytic function in the region <s > 1.

I Because every integer n can be factored uniquely into prime
factors we can also write,

ζ(s) =
∏
p

(
1 + 1

ps + 1
p2s + . . .

)
=
∏
p

(
1− 1

ps

)−1

where the product is taken over all primes p.



Infinitude of primes
I The two representations

ζ(s) =
∑
n≥1

1
ns =

∏
p

(
1− 1

ps

)
can be used to obtain the divergence of the series∑

p

1
p .

I Indeed take s > 1 to be real. Then,∑
n≥1

1
ns =

∫ ∞
1

x−sdx + O(1) = 1
s − 1 + O(1)

I On the other hand

log
∏
p

(
1− 1

ps

)−1
=
∑

p

1
ps + O(1)



Infinitude of primes
I Putting these two together we conclude∑

p

1
ps = log

( 1
s − 1 + O(1)

)
+ O(1)

I Which gives the divergence of
∑

p
1
p .

I Taking s = 1 + 1
log x suggests that

∑
p≤x

1
p ≈

∑
p

1
ps = log log x + O(1)

I With more work this can be established.

I Incidentally we can also get the infinitude of the primes from

∏
p

(
1− 1

p2

)−1
=
∑
n≥1

1
ns = π2

6 6∈ Q



Analytic continuation

I It is clear that there is content in playing these two
representations against each other.

I A natural step further is to try to analytically continue the
Riemann zeta-function to the whole complex plane.

I Notice that,
Γ(s) 1

ns =
∫ ∞

0
e−nxx s−1dx

I Summing this over n ≥ 1 in <s > 1 we get

Γ(s)ζ(s) =
∫ ∞

0

(∑
n≥1

e−nx
)
x s−1dx =

∫ ∞
0

e−x

1− e−x · x
s−1dx



Analytic continuation

I It therefore remains to analytically continue

( ∫ 1

0
+
∫ ∞

1

) e−x

1− e−x x s−1dx =

to the whole complex plane.

I In the integral over x ∈ [1,∞) we simply integrate by parts
repeatedly. This gives a meromorphic continuation to
<s > −A for any given A > 0.

I In the integral over x ∈ [0, 1) we expand e−x

1−e−x into a Taylor
series and obtain the requisite meromorphic continuation to
<s > −A for any given A > 0.

I The only possible poles are at s ∈ {1, 0,−1,−2, . . .} and by
being careful we can show that only the pole at s = 1 actually
exists.



The explicit formula

I Since ζ(s) admits an meromorphic continuation to the whole
complex plane C so does

−ζ
′

ζ
(s) =

∑
n≥1

Λ(n)
ns

where

Λ(n) =
{

log p if n = pα

0 otherwise

I Can we exploit this to say something deeper about the
distribution of prime numbers?



Mellin transforms
I We make a small aside on Mellin transforms

I Let W a Schwartz function, compactly supported in (0,∞).

I The Mellin transform,

W̃ (x) =
∫ ∞

0
W (x)x s−1dx

is an entire function such that W (σ + it)�σ,A (1 + |t|)−A for
any given A and any σ in a fixed strip.

I We also have the inverse Mellin transform

W (x) = 1
2πi

∫ c+∞

c−i∞
W̃ (s)x−sdx

I These are multiplicative analogues of the usual Fourier
transform (or in this context more precisely Laplace transform)



The explicit formula
I By Mellin inversion we have,

W
(n

x
)

= 1
2π

∫ 2+i∞

2−i∞
W̃ (s)

(x
n
)s

dx

I Summing over n with weights Λ(n) we get

∑
n≥1

Λ(n)W
(n

x
)

= 1
2πi

∫ 2+i∞

2−i∞

(
− ζ ′

ζ
(s)
)
W̃ (s)x sds

I Let’s take for granted that ζ′

ζ (s)� (1 + |s|)A for some fixed
constant A > 0. We will show this later.

I If that is the case then we can shift the contour from the line
2 + iR to the line −ε+ iR. When doing so we collect residues
from the poles of ζ ′/ζ.



The explicit formula
I Doing so gives us the explicit formula∑

n≥1
Λ(n)W

(n
x
)

= x +
∑
ρ

xρW̃ (ρ)

where ρ goes over the zeros of the Riemann zeta function and
The term x comes from the simple pole at s = 1.

I This makes it clear that
∑

n≤x Λ(n) ∼ x is equivalent to ζ(s)
not having any zeros on <s = 1.

I Let’s W tend to the indicator function of [0, 1], then we get

∑
n≤x

Λ(n) = x +
∑
ρ

xρ
ρ

I This immediately shows that there are infinitely many zeros of
ζ(s). The left-hand side is discontinuous, but if there were only
finitely many zeros the right hand side would be continuous.



The explicit formula

I Furthermore if we believe that primes are “like a random
sequence” then we would expect that∑

n≤x
Λ(n) ≈ x + O(

√
x)

I This together with the explicit formula suggests that all the
zeros of ζ(s) are located in <s ≤ 1

2 .

I However one cannot extract too much non-trivial information
from the explicit formula. The explicit formula is the statement
that zeros and primes are equivalent. But not much else.



Limitations of the explicit formula
I One good way of understanding the limitations of the explicit

formula is to take the difference between the expression for x
and x + h, getting

∑
x≤n≤x+h

Λ(n) = h +
∑
ρ

(x + h)ρ − xρ
ρ

I Roughly speaking

(x + h)ρ − xρ
ρ

≈
{

hxρ−1 if |ρ| ≤ x/h
0 otherwise

I So that ∑
x<n<x+h

Λ(n) ≈ h + h
∑
|ρ|≤x/h

xρ−1

I So if we want to check whether n is prime that would require
us to compute all the zeros up to height n.



Limitations

I Conversely if we wanted to know very precise information
about zeros it would require a lot of information about primes.

I This is simply a form of Heisenberg’s uncertainty principle for
the Fourier transform.

I The explicit formula cannot give us simultaneously very precise
information about the primes and the zeros. It’s always either
one or the other.

I Still the explicit formula is not useless:
1. There are algorithms that determine all the zeros of ζ(s) up to

height T in time T (relying on the FFT).

2. By carefully balancing the explicit formula we get an algorithm
for computing the number of primes up to x in time

√
x .



Further properties inside the complex plane

I We’ve seen so far that ζ(s) continue meromorphically to C.

I Assuming that we can obtain bounds for ζ′

ζ (s) away from zeros
this meromorphic continuation is useful and relates the
behavior of the primes to the location of the zeros of ζ(s).

I We need therefore to better understand the behavior of ζ(s)
inside the complex plane.



Properties inside the complex plane

I Note that so far everything that we used came from the
meromorphic continuation and the Euler product.

I Besides the Euler product the second deep property that the
Riemann zeta-function possesses is the functional equation: if
we let

ξ(s) := π−s/2Γ
( s
2
)
ζ(s)

then
ξ(s) = ξ(1− s).



What is the meaning of the functional equation

I Before sketching the proof of the functional equation, let me
explain its meaning and consequences.

I The Euler product captures the fact that integers factor
uniquely into prime numbers, i.e the multiplicative property of
the integers

I The functional equation in turns captures the fact that integers
form lattice, i.e the additive property of the integers. I will now
explain why this is so.



Poisson summation

I We will show that the functional equation for the Riemann ζ
function is equivalent to the Poisson summation formula∑

n∈Z
f (n) =

∑
n∈Z

f̂ (n)

which is valid for any Schwartz function f .

I A Poisson summation formula can hold only when there is an
underlying (often quite hidden) lattice structure.

I In that sense the functional equation captures the fact that
integers form a lattice.



Poisson summation

I Let me now quickly explain how this equivalence goes.

I In one direction if the Poisson summation formula holds then
we specialize to f (n) = e−n2/x for example, and we integrate
both sides with respect to

∫∞
0 (. . .)x s−1dx . This gives the

functional equation for ζ(s).

I We pick f (n) = e−n2/x because it has nice transformation
properties (in fact

∑
n∈Z e−n2z is an automorphic form). But

pretty much any other choice would have worked too; it would
have simply led to more convoluted calculations.



Poisson summation
I In the other direction assume f is such that f (0) = 0 and f is

even.

I We consider, ∑
n≥1

f (n) = 1
2πi

∫ 2+i∞

2−i∞
f̃ (s)ζ(s)ds

where
f̃ (s) =

∫ ∞
0

f (x)x s−1dx .

I We now shift contours to the line <s = −ε. Thus∑
n≥1

f (n) = 1
2πi

∫ −ε+i∞

−ε−i∞
f̃ (s)ζ(s)ds.

I We now apply the functional equation in the form,

ζ(s) = πs−1/2 Γ( s
2)

Γ(1−s
2 )

ζ(1− s)



Poisson summation
I We find that∑

n≥1
f (n) = 1

2πi

∫ −ε+i∞

−ε−i∞
f̃ (s)πs−1/2 Γ( s

2)
Γ(1−s

2 )
ζ(1− s)ds

I We make the change of variable s 7→ 1− s. We then get,

1
2πi

∫ 1+ε+i∞

1+ε−i∞
f̃ (1− s)π1/2−s Γ(1−s

2 )
Γ( s

2) ζ(s)ds

I We expand ζ(s) point-wise finding that the above is equal to∑
n≥1

f ?(n)

where

f ?(x) := 1
2πi

∫ 1+ε+i∞

1+ε−i∞
f̃ (1− s)π1/2−s Γ(1−s

2 )
Γ( s

2) x−sds



Poisson summation

I Unsurprisingly one can show (using a version of Plancherel for
Mellin transforms) that

f ?(x) =
∫
R

f (y) cos(2πxy)dy

I And thus we have obtained∑
n≥1

f (n) =
∑
n≥1

∫
R

f (y) cos(2πny)dy

which is an equivalent form of Poisson summation formula for
any function f such that f (0) = 0 and f is even.



Consequences of the functional equation

I The functional equation has many important immediate
consequences.

I First, there are no zeros in <s < 0 except at s = −k with
k ∈ Z.

I Second,
ζ ′

ζ
(s) = ζ ′

ζ
(1− s) + O(log t)

In particular we have ζ′

ζ (s)� log t in <s < 0 , justifying our
previous assumption when deriving the explicit formula.

I Finally, we can trivially bound ζ(s) for <s > 1 and thus the
functional equation gives us bounds for ζ(s) in <s < 0. Using
convexity in complex analysis this gives us bounds for ζ(s) in
the so-called critical strip 0 < <s < 1.



Further consequences of the functional equation

I Another consequence of the functional equation is that

ζ(1
2 + it) = e−2iθ(t)ζ(1

2 − it)

where
e2iθ(t) := πit Γ(1

4 −
it
2 )

Γ(1
4 + it

2 )

I In particular this means that

Z (t) = e−iθ(t)ζ(1
2 − it) ∈ R.

I No such normalization is known on any other line σ + it with
σ 6= 1

2 . This alones makes it much more likely for zeros of ζ(s)
to occur on <s = 1

2 since the function can be made real on
this line and thus a zero comes simply from a sign change.



Further consequences of the functional equation

I In fact it is conjectured that the functional equation alone
should be responsible for the claim that “100%” of the zeros of
the Riemann ζ function lie on the critical line.



Summary

I There are only two important properties of the Riemann
zeta-function : the Euler product and the functional equation.

I Everything that we know about the Riemann zeta function
comes from one or the other.

I Usually the Euler product is used when talking about the zeros
of the Riemann zeta-function.

I Usually the functional equation is used when we are interested
in bounding the size of the Riemann zeta-function in the strip.

I In Lecture 2 I will discuss the consequences of the functional
equation

I In Lecture 3 I will discuss the consequences of the Euler product

I In Lecture 4 we will study the finer aspects of the behavior of
the Riemann zeta-function


