Riemann (

» In this lectures | will discuss the basic theory of the Riemann (
function.

» The plan for the four lectures is as follows:

—_

. Main properties

2. Computing and bounding the Riemann zeta-function
3. Zero-density theorems and mollifiers
4

. The finer aspects



The Riemann (-function

» The Riemann ( function is defined in s > 1 as

1
C(S) = Z ;
n>1
» This defines an analytic function in the region s > 1.

» Because every integer n can be factored uniquely into prime
factors we can also write,

C(S):g(1+;315+;:125+"'):1;[(1_s>1

where the product is taken over all primes p.



Infinitude of primes
» The two representations

1 1
~=10-)

b P
can be used to obtain the divergence of the series

1

n>1

» Indeed take s > 1 to be real. Then,

S =[x+ 01) = 5 + o)

n>1
» On the other hand

Iogl;[(l—pls>_1 :Zpls+0(1)

p



Infinitude of primes

» Putting these two together we conclude
1 1

> P
> Which gives the divergence of _, %.

> Taking s = 1 + - suggests that

log x

1 1
Z x Z—s = loglog x + O(1)
p<x P o P

» With more work this can be established.

» Incidentally we can also get the infinitude of the primes from

1

1 1 2
-5 =Zs-see



Analytic continuation

P It is clear that there is content in playing these two
representations against each other.

P> A natural step further is to try to analytically continue the
Riemann zeta-function to the whole complex plane.

» Notice that,

1 o —nx s—1
F(s); = e Mxdx
0

» Summing this over n > 1 in Rs > 1 we get

—X

M(s)¢(s) / Ze_"x) s=lax —/ :7 x5 Ldx

n>1 0



Analytic continuation

> It therefore remains to analytically continue

( /01+ /)4 C et -

to the whole complex plane.

» In the integral over x € [1,00) we simply integrate by parts
repeatedly. This gives a meromorphic continuation to
Rs > —A for any given A > 0.

> In the integral over x € [0,1) we expand 12— into a Taylor
series and obtain the requisite meromorphic continuation to
Rs > —A for any given A > 0.

» The only possible poles are at s € {1,0,—1,—2,...} and by
being careful we can show that only the pole at s = 1 actually
exists.



The explicit formula

» Since ((s) admits an meromorphic continuation to the whole
complex plane C so does

¢ A(n)

)= >

n>1

where

A(n) = {Iogp ifn=p

0 otherwise

» Can we exploit this to say something deeper about the
distribution of prime numbers?



Mellin transforms

» We make a small aside on Mellin transforms
» Let W a Schwartz function, compactly supported in (0, c0).

» The Mellin transform,
W(X):/ W (x)x*tdx
0

is an entire function such that W(o + it) <, (1 + |t])~" for
any given A and any o in a fixed strip.

» We also have the inverse Mellin transform
1 ctoo __
W(x) = / W(s)x *dx
C

270 Je—ioo

» These are multiplicative analogues of the usual Fourier
transform (or in this context more precisely Laplace transform)



The explicit formula

» By Mellin inversion we have,

n 1 [2+ico _ X\ S
W(;) = 5/2_. W(s)(;) dx

100

» Summing over n with weights A(n) we get

2+ico

Z/\n)W( ) 27”/2 |

n>1 —loo

C, A/ s
(- Z(s)) W (s)x*ds

> Let's take for granted that C%(s) < (1 +|s])? for some fixed
constant A > 0. We will show this later.

» If that is the case then we can shift the contour from the line
2 + iR to the line —¢ + /R. When doing so we collect residues
from the poles of ¢’/(.



The explicit formula

» Doing so gives us the explicit formula
n

STAMW () = x+ > X W(p)

n>1 X

where p goes over the zeros of the Riemann zeta function and
The term x comes from the simple pole at s = 1.

» This makes it clear that >°,, A(n) ~ x is equivalent to ((s)
not having any zeros on fs = 1.

» Let's W tend to the indicator function of [0, 1], then we get

Z/\(n):x+zx:

n<x 14

» This immediately shows that there are infinitely many zeros of
¢(s). The left-hand side is discontinuous, but if there were only
finitely many zeros the right hand side would be continuous.



The explicit formula

» Furthermore if we believe that primes are “like a random
sequence” then we would expect that

S A(n) = x + O(V)

n<x

» This together with the explicit formula suggests that all the
zeros of ((s) are located in Rs < 1.

» However one cannot extract too much non-trivial information
from the explicit formula. The explicit formula is the statement
that zeros and primes are equivalent. But not much else.



Limitations of the explicit formula

» One good way of understanding the limitations of the explicit
formula is to take the difference between the expression for x
and x + h, getting

Z An )—h+z (x + h)P — x?

x<n<x+h
» Roughly speaking

(x +h)P —xP {hx”_1 if [p| < x/h

P 0 otherwise

> So that

Z A(n) = h+h Z xP~1

x<n<x+h lp|<x/h

» So if we want to check whether n is prime that would require
us to compute all the zeros up to height n.



Limitations

» Conversely if we wanted to know very precise information
about zeros it would require a lot of information about primes.

» This is simply a form of Heisenberg's uncertainty principle for
the Fourier transform.

» The explicit formula cannot give us simultaneously very precise
information about the primes and the zeros. It's always either
one or the other.

» Still the explicit formula is not useless:

1. There are algorithms that determine all the zeros of {(s) up to
height T in time T (relying on the FFT).

2. By carefully balancing the explicit formula we get an algorithm
for computing the number of primes up to x in time /x.



Further properties inside the complex plane

» \We've seen so far that ((s) continue meromorphically to C.

» Assuming that we can obtain bounds for %(s) away from zeros
this meromorphic continuation is useful and relates the
behavior of the primes to the location of the zeros of ((s).

» We need therefore to better understand the behavior of ((s)
inside the complex plane.



Properties inside the complex plane

> Note that so far everything that we used came from the
meromorphic continuation and the Euler product.

P Besides the Euler product the second deep property that the
Riemann zeta-function possesses is the functional equation: if
we let s

o —s/2r (2
§(s) =721 (5)<(s)
then

&s) = &(1—s).



What is the meaning of the functional equation

» Before sketching the proof of the functional equation, let me
explain its meaning and consequences.

» The Euler product captures the fact that integers factor
uniquely into prime numbers, i.e the multiplicative property of
the integers

» The functional equation in turns captures the fact that integers
form lattice, i.e the additive property of the integers. | will now
explain why this is so.



Poisson summation

» We will show that the functional equation for the Riemann ¢
function is equivalent to the Poisson summation formula

Y f(n)=> f(n)
nez nez
which is valid for any Schwartz function f.

» A Poisson summation formula can hold only when there is an
underlying (often quite hidden) lattice structure.

» In that sense the functional equation captures the fact that
integers form a lattice.



Poisson summation

P> Let me now quickly explain how this equivalence goes.

» In one direction if the Poisson summation formula holds then
we specialize to f(n) = e " /* for example, and we integrate
both sides with respect to [;°(...)x*"tdx. This gives the
functional equation for ((s).

» We pick f(n) = e~/ because it has nice transformation
. . _n2s . .
properties (in fact 3, €~ is an automorphic form). But
pretty much any other choice would have worked too; it would
have simply led to more convoluted calculations.



Poisson summation
» In the other direction assume f is such that 7(0) =0 and f is
even.

» We consider,

2+ico _
> () =5 /2 T Hs)C(s)ds

n>1 —leo
where -
= / f(x)x* tdx.
0
» We now shift contours to the line Rs = —¢. Thus
—e+ioco _
S f(n / F(s)C(s)ds.
n>1 " 2ni —e—ico

» We now apply the functional equation in the form,

(o) = w2 D1 -




Poisson summation
» We find that

S =5 [ R T s

n>1 —eTioo r=*)

~ ‘

> We make the change of variable s — 1 —s. We then get,

1 fldetioo r(b)
- (1 —s)gl/2—s_ Y 2 /
2mi /1+s—ioo (1=s)m res) ((s)ds

» We expand ((s) point-wise finding that the above is equal to

> f*(n)

n>1

wpoy L1 pitetico 12-sT (%) s
*(x) ._2'7Ti/1+a—ioo f(l—s)r 16) x"°ds



Poisson summation

» Unsurprisingly one can show (using a version of Plancherel for
Mellin transforms) that

F*(x) = /R F(y) cos(2mxy)dy

» And thus we have obtained

Z / ) cos(2mny)dy

n>1 n>1

which is an equivalent form of Poisson summation formula for
any function f such that £(0) =0 and f is even.



Consequences of the functional equation

>

| 4

The functional equation has many important immediate
consequences.

First, there are no zeros in Rs < 0 except at s = —k with
keZ.
Second,

¢ ¢

E(S) = E(l —s)+ O(log t)

In particular we have Cé(s) < logtin Rs < 0, justifying our
previous assumption when deriving the explicit formula.

Finally, we can trivially bound ((s) for $#ts > 1 and thus the
functional equation gives us bounds for {(s) in Rs < 0. Using
convexity in complex analysis this gives us bounds for {(s) in
the so-called critical strip 0 < s < 1.



Further consequences of the functional equation

» Another consequence of the functional equation is that
C(3+it) = e 2L — it)

where

» In particular this means that

Z(t) = e B¢k —it) e R.

» No such normalization is known on any other line o + it with
o # % This alones makes it much more likely for zeros of ((s)
to occur on Rs = % since the function can be made real on
this line and thus a zero comes simply from a sign change.



Further consequences of the functional equation

P In fact it is conjectured that the functional equation alone
should be responsible for the claim that “100%" of the zeros of
the Riemann ( function lie on the critical line.



Summary

>

There are only two important properties of the Riemann
zeta-function : the Euler product and the functional equation.

Everything that we know about the Riemann zeta function
comes from one or the other.

Usually the Euler product is used when talking about the zeros
of the Riemann zeta-function.

Usually the functional equation is used when we are interested
in bounding the size of the Riemann zeta-function in the strip.

In Lecture 2 | will discuss the consequences of the functional
equation

In Lecture 3 | will discuss the consequences of the Euler product

In Lecture 4 we will study the finer aspects of the behavior of
the Riemann zeta-function



