Probabilistic aspects of character sums
 Lecture 3: Moving intervals

Adam J Harper
University of Warwick

SSANT Paris, June 2021

Recall: r is a large prime, χ is a (non-principal) Dirichlet character $\bmod r$.

Plan of the talk:

- Introduction to the moving intervals problem
- First thoughts about a random model
- Previous work
- A negative and a positive result
- Open questions

The problem

Investigate the statistical behaviour of

$$
S_{\chi, H}(x):=\sum_{x<n \leq x+H} \chi(n)
$$

as $1 \leq x \leq r$ varies, where $H=H(r)$ is some length function.
Ideally, we would like to understand the behaviour for each fixed $\chi \neq \chi_{0}$.

We might make the problem easier by only seeking results for "almost all" χ mod r, or (even easier) varying χ in addition to varying x.

First thoughts

- As $1 \leq x \leq r$ varies, most of its values will be fairly large (e.g. larger than \sqrt{r}).
- So to understand the behaviour of $S_{\chi, H}(x)$, we will need to keep the Pólya Fourier expansion (PFE) in mind:

$$
\begin{aligned}
& S_{\chi, H}(x)=\sum_{n \leq x+H} \chi(n)-\sum_{n \leq x} \chi(n) \\
= & \frac{\tau(\chi)}{2 \pi i} \sum_{0<|k| \leq r} \frac{\bar{\chi}(-k)}{k}(e(k(x+H) / r)-e(k x / r))+O(\log r) \\
= & \frac{\tau(\chi)}{2 \pi i} \sum_{0<|k| \leq r} \frac{\bar{\chi}(-k)}{k} e(k x / r)(e(k H / r)-1)+O(\log r) \\
\approx & \frac{\tau(\chi) H}{r} \sum_{0<|k| \leq r / H} \bar{\chi}(-k) e(k x / r) .
\end{aligned}
$$

- $S_{\chi, H}(x) \approx \frac{\tau(\chi) H}{r} \sum_{0<|k| \leq r / H} \bar{\chi}(-k) e(k x / r)$.
- Compare with Lecture 2: here we have lost the denominator k.
- If $\sqrt{r} \leq H \leq r$, so that $r / H \leq \sqrt{r}$, then we might try modelling/investigating the values $\chi(-k)$ using random multiplicative functions. This seems reasonable for "almost all" χ, but could there be some pathological χ that behave differently?
- If $H \leq \sqrt{r}$, the random multiplicative model doesn't look so helpful.

Previous work

Theorem 1 (Davenport \& Erdős, 1952)
If $\chi=(\dot{\bar{r}})$ is the Legendre symbol; and if the function H satisfies $H \rightarrow \infty$ but $(\log H) / \log r \rightarrow 0$ as the prime $r \rightarrow \infty$; and if $X \in\{0,1, \ldots, r-1\}$ is uniformly random; then one has convergence in distribution to a standard Gaussian,

$$
\frac{S_{x, H}(X)}{\sqrt{H}} \xrightarrow{d} N(0,1) \quad \text { as } r \rightarrow \infty .
$$

More explicitly, for any fixed $z \in \mathbb{R}$ we have

$$
\mathbb{P}\left(\frac{S_{\chi, H}(X)}{\sqrt{H}} \leq z\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t \quad \text { as } r \rightarrow \infty .
$$

What about non-real characters χ ?

Mak \& Zaharescu, 2011: if one chooses a non-real character χ modulo each prime r (in any way), then under the same conditions on H as Davenport and Erdős we have

$$
\Re \frac{S_{\chi, H}(X)}{\sqrt{H}}, \quad \Im \frac{S_{\chi, H}(X)}{\sqrt{H}} \xrightarrow{d} N(0,1 / 2) \quad \text { as } r \rightarrow \infty .
$$

Lamzouri, 2013: if one chooses a non-real character χ modulo each prime r (in any way), then under the same conditions on H as Davenport and Erdős we have

$$
\frac{S_{\chi, H}(X)}{\sqrt{H}} \xrightarrow{d} Z_{1}+i Z_{2} \quad \text { as } r \rightarrow \infty,
$$

where Z_{1}, Z_{2} are independent $N(0,1 / 2)$ random variables.

The condition $(\log H) / \log r \rightarrow 0$ arises because all these theorems are proved using the method of moments.

For example, Davenport and Erdős (with $\chi=(\dot{\bar{r}})$) calculated

$$
\frac{1}{r} \sum_{0 \leq x \leq r-1}\left(\frac{S_{\chi, H}(x)}{\sqrt{H}}\right)^{j}=\frac{1}{r H^{j / 2}} \sum_{1 \leq h_{1}, \ldots, h_{j} \leq H} \sum_{x}\left(\frac{x+h_{1}}{r}\right) \ldots\left(\frac{x+h_{j}}{r}\right),
$$

showing that for each fixed $j \in \mathbb{N}$ this converges to the standard normal moment $(1 / \sqrt{2 \pi}) \int_{-\infty}^{\infty} z^{j} e^{-z^{2} / 2} d z$ as $r \rightarrow \infty$.

This uses the Weil bound:

- given a tuple $\left(h_{1}, \ldots, h_{j}\right)$ of shifts, if any shift h occurs with odd multiplicity then the sum over x is $<_{j} \sqrt{r}$;
- under the condition $(\log H) / \log r \rightarrow 0$, all these terms are

$$
\ll j_{j} \frac{1}{\sqrt{r} H^{j / 2}} \sum_{\substack{1 \leq h_{1}, \ldots, h_{j} \leq H, \\ \text { a shift occurs with odd multiplicity }}} 1 \leq \frac{H^{j / 2}}{\sqrt{r}} \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

Theorem 2 (Chatterjee \& Soundararajan, 2012)
If $f(n)$ is a Rademacher random multiplicative function, and $y=y(x)$ satisfies $x^{1 / 5} \log x \ll y=o(x / \log x)$, then

$$
\frac{\sum_{x<n \leq x+y} f(n)}{\sqrt{\mathbb{E}\left(\sum_{x<n \leq x+y} f(n)\right)^{2}}} \stackrel{d}{\rightarrow} N(0,1) \quad \text { as } x \rightarrow \infty .
$$

Motivated by Theorem 2, Lamzouri made the following conjecture.
Conjecture 1 (Lamzouri, 2013)
If we choose a non-real character χ modulo each prime r (in any way), then provided $H \rightarrow \infty$ but $H=o(r / \log r)$ we have

$$
\frac{S_{\chi, H}(X)}{\sqrt{H}} \xrightarrow{d} Z_{1}+i Z_{2} \quad \text { as } r \rightarrow \infty,
$$

where Z_{1}, Z_{2} are independent $N(0,1 / 2)$ random variables.

Is Lamzouri's conjecture reasonable?

- At first look, it seems plausible.
- But as already discussed, this problem involves values $\chi(n)$ for large n (much bigger than \sqrt{r}). So we need to use the PFE (or something else that encodes periodicity) to properly analyse the situation.
- Also, a random multiplicative function is expected to model a randomly chosen character. Here the character is fixed, and the start point X of the interval varies randomly.

A negative result

Theorem 3 (H.)
Let $A>0$ be arbitrary but fixed, and set $H(r)=r / \log ^{A} r$. Then as r varies over large primes, there exists a corresponding sequence of non-real characters χ modulo r for which

$$
\frac{S_{\chi, H}(X)}{\sqrt{H}} \stackrel{d}{\nrightarrow} Z_{1}+i Z_{2} \quad \text { as } r \rightarrow \infty
$$

where Z_{1}, Z_{2} are independent $N(0,1 / 2)$ random variables.
Theorem 3 shows that Lamzouri's conjecture is false.
One can prove an analogous negative result for real characters $(\dot{\bar{r}})$.

Key steps in the proof:

- When $H=r / \log ^{A} r$, the PFE implies that

$$
\begin{aligned}
\frac{S_{\chi, H}(x)}{\sqrt{H}} & \approx \frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq r / H} \bar{\chi}(-k) e(k x / r) \\
& =\frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} \bar{\chi}(-k) e(k x / r)
\end{aligned}
$$

- For any fixed $A>0$, we can find non-real Dirichlet characters $\chi \bmod r$ for which $\chi(k)$ looks "sort of like" 1 for all $1 \leq k \leq \log ^{A} r$.
- For such χ, our sum $S_{\chi, H}(x) / \sqrt{H}$ will look "sort of like" the scaled Dirichlet kernel $\frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} e(k x / r)$, which shouldn't have Gaussian behaviour.

Second part:
Granville and Soundararajan, 2001: for any $A>0$ and any prime r that is large enough in terms of A, there exist (many) $\chi \bmod r$ such that

$$
\left|\sum_{n \in \sigma^{A}} \chi(n)\right| \gtrsim \rho(A) \log ^{A} r
$$

where $\rho(A)>0$.
(Roughly speaking, the χ produced are such that $\chi(p) \approx 1$ for all $p \leq \log r$. The lower bound comes from the contribution from $\log r$-smooth numbers n, which are a positive proportion of all $n \leq \log ^{A} r$.)

Third part:
To rigorously exploit our lower bound $\left|\sum_{n \leq \log ^{A} r} \chi(n)\right| \gtrsim \rho(A) \log ^{A} r$, we need:

Lemma 1
Let $0 \leq \tau<1$, and suppose $\left(V_{n}\right)_{n=1}^{\infty}$ is a sequence of random variables satisfying $\mathbb{E}\left|V_{n}\right|^{2} \leq \tau$ for all n. Then if Z is any random variable such that $\mathbb{E}|Z|^{2}=1$, we have

$$
V_{n} \stackrel{d}{\nrightarrow} Z \quad \text { as } n \rightarrow \infty
$$

Proof of Lemma 1.

Choose $a \in \mathbb{R}$ such that $\mathbb{E} \min \left\{|Z|^{2}, a^{2}\right\} \geq(1+\tau) / 2$ (such a exists by the monotone convergence theorem).

Since $v \mapsto \min \left\{|v|^{2}, a^{2}\right\}$ is a continuous bounded function on \mathbb{C}, if we had $V_{n} \xrightarrow{d} Z$ then we would have

$$
\mathbb{E} \min \left\{\left|V_{n}\right|^{2}, a^{2}\right\} \rightarrow \mathbb{E} \min \left\{|Z|^{2}, a^{2}\right\} \quad \text { as } n \rightarrow \infty
$$

But this is impossible, since
$\mathbb{E} \min \left\{\left|V_{n}\right|^{2}, a^{2}\right\} \leq \mathbb{E}\left|V_{n}\right|^{2} \leq \tau<(1+\tau) / 2$.

Then if we let α be such that
$\sum_{0<k \leq \log ^{A} r} \bar{\chi}(-k)=\alpha \sum_{0<k \leq \log ^{A} r} 1$, and set
$G_{\chi, H}(x):=\frac{\alpha \tau(\chi) \sqrt{H}}{r} \sum_{1 \leq k \leq \log ^{A} r} e(k x / r)$, we have

$$
\begin{aligned}
& \frac{S_{\chi, H}(x)}{\sqrt{H}} \approx \frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} \bar{\chi}(-k) e(k x / r) \\
= & \left(\frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} \bar{\chi}(-k) e(k x / r)-G_{\chi, H}(x)\right)+G_{\chi, H}(x) .
\end{aligned}
$$

- Using the formula for the sum of a geometric progression, we see $G_{\chi, H}(x)$ is small whenever $\sqrt{r H} \leq x \leq r-\sqrt{r H}$.
- This is almost all values of $x \bmod r$, so if $\frac{S_{\chi, H}(X)}{\sqrt{H}}$ converges in distribution to $Z_{1}+i Z_{2}$ then the same must be true for $\left(\frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} \bar{\chi}(-k) e(k X / r)-G_{\chi, H}(X)\right)$.
- But if we compute

$$
\mathbb{E}\left|\frac{\tau(\chi) \sqrt{H}}{r} \sum_{0<|k| \leq \log ^{A} r} \bar{\chi}(-k) e(k X / r)-G_{\chi, H}(X)\right|^{2},
$$

(where $X \in\{0,1, \ldots, r-1\}$ is uniformly random), we find this is $\approx 1-|\alpha|^{2}$.

- We have $\mathbb{E}\left|Z_{1}+i Z_{2}\right|^{2}=\mathbb{E} Z_{1}^{2}+\mathbb{E} Z_{2}^{2}=1$.
- And by our choice of χ, we know $|\alpha|$ is bounded away from zero (it is $\gtrsim \rho(A)$).
- So Theorem 3 follows from Lemma 1.

A positive result

The characters χ that we use to disprove Lamzouri's conjecture are rather pathological, so we might hope the conjecture could at least be true for "almost all" characters mod r.

Theorem 4 (H.)
Let $H=H(r)$ be a function satisfying $\frac{\log (r / H)}{\log r} \rightarrow 0$ but $H=o(r)$ as $r \rightarrow \infty$. Then there exist sets \mathcal{G}_{r} of characters mod r, satisfying $\frac{\# \mathcal{G}_{r}}{r-1} \rightarrow 1$, such that for $\chi \in \mathcal{G}_{r}$ we have

$$
\frac{S_{\chi, H}(X)}{\sqrt{H}} \xrightarrow{d} Z_{1}+i Z_{2} \quad \text { as } r \rightarrow \infty .
$$

The condition that $H=o(r)$ is natural (so the number $\approx r / H$ of terms in the PFE tends to infinity).
The condition that $\frac{\log (r / H)}{\log r} \rightarrow 0$ is (presumably) just an artefact of the proof.

Key steps in the proof:

- Prove the analogous result for $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0<|k| \leq r / H} f(-k) e(k X / r)$, where $f(k)$ is a Steinhaus random multiplicative function.
- This can be done using martingale theory. Another treatment, via moments and a non-trivial point counting problem, is in a 2020 paper of Benatar, Nishry and Rodgers.
- Compare the moments of $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0<|k| \leq r / H} f(-k) e(k X / r)$ with those of $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0<|k| \leq r / H} \bar{\chi}(-k) e(k X / r)$. This is where the condition $\frac{\log (r / H)}{\log r} \rightarrow 0$ is used.

Open questions

As a replacement for Lamzouri's conjecture, I tentatively propose:

Conjecture 2

If we choose a non-real character χ modulo each prime r (in any way), then provided $H \rightarrow \infty$ and $\frac{\log (r / H)}{\log \log r} \rightarrow \infty$ we have

$$
\frac{S_{\chi, H}(X)}{\sqrt{H}} \xrightarrow{d} Z_{1}+i Z_{2} \quad \text { as } r \rightarrow \infty,
$$

where Z_{1}, Z_{2} are independent $N(0,1 / 2)$ random variables.
(And the analogous conjecture for real characters.)
Open question: Prove Conjecture 2.

But beware!
To prove the conjecture, we need to know that the construction used in Theorem 3 cannot be extended, so we need to know (at least) that

$$
\sum_{n \leq r / H} \chi(n)=o(r / H) \forall \chi \neq \chi_{0} \bmod r, \quad \text { provided } \frac{\log (r / H)}{\log \log r} \rightarrow \infty
$$

We only know how to prove this assuming GRH, so a proof of the conjecture will (probably!) need to be conditional.

Open question: Prove the conjecture for "almost all" χ on a range of H where it is unknown, e.g. when $H=\sqrt{r}$.

This will require finding an alternative to the method of moments (or perhaps a much cleverer application of it).

