Probabilistic aspects of character sums Lecture 3: Moving intervals

> Adam J Harper University of Warwick

SSANT Paris, June 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall: r is a large prime, χ is a (non-principal) Dirichlet character mod r.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Plan of the talk:

- Introduction to the moving intervals problem
- First thoughts about a random model
- Previous work
- A negative and a positive result
- Open questions

The problem

Investigate the statistical behaviour of

$$S_{\chi,H}(x) := \sum_{x < n \le x + H} \chi(n)$$

as $1 \le x \le r$ varies, where H = H(r) is some length function.

Ideally, we would like to understand the behaviour for each fixed $\chi \neq \chi_0$.

We might make the problem easier by only seeking results for "almost all" χ mod r, or (even easier) varying χ in addition to varying x.

First thoughts

- As 1 ≤ x ≤ r varies, most of its values will be fairly large (e.g. larger than √r).
- So to understand the behaviour of S_{χ,H}(x), we will need to keep the Pólya Fourier expansion (PFE) in mind:

$$S_{\chi,H}(x) = \sum_{n \le x+H} \chi(n) - \sum_{n \le x} \chi(n)$$

= $\frac{\tau(\chi)}{2\pi i} \sum_{0 < |k| \le r} \frac{\overline{\chi}(-k)}{k} (e(k(x+H)/r) - e(kx/r)) + O(\log r)$
= $\frac{\tau(\chi)}{2\pi i} \sum_{0 < |k| \le r} \frac{\overline{\chi}(-k)}{k} e(kx/r)(e(kH/r) - 1) + O(\log r)$
 $\approx \frac{\tau(\chi)H}{r} \sum_{0 < |k| \le r/H} \overline{\chi}(-k)e(kx/r).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\blacktriangleright S_{\chi,H}(x) \approx \frac{\tau(\chi)H}{r} \sum_{0 < |k| \le r/H} \overline{\chi}(-k) e(kx/r).$$

- Compare with Lecture 2: here we have lost the denominator k.
- If √r ≤ H ≤ r, so that r/H ≤ √r, then we might try modelling/investigating the values χ(-k) using random multiplicative functions. This seems reasonable for "almost all" χ, but could there be some pathological χ that behave differently?
- If $H \leq \sqrt{r}$, the random multiplicative model doesn't look so helpful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Previous work

Theorem 1 (Davenport & Erdős, 1952) If $\chi = (\frac{\cdot}{r})$ is the Legendre symbol; and if the function H satisfies $H \to \infty$ but $(\log H)/\log r \to 0$ as the prime $r \to \infty$; and if $X \in \{0, 1, ..., r - 1\}$ is uniformly random; then one has convergence in distribution to a standard Gaussian,

$$rac{\mathcal{S}_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{
ightarrow} \mathsf{N}(0,1) \hspace{0.5cm} ext{ as } \mathsf{r}
ightarrow \infty.$$

More explicitly, for any fixed $z \in \mathbb{R}$ we have

$$\mathbb{P}\left(\frac{S_{\chi,H}(X)}{\sqrt{H}} \leq z\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^{2}/2} dt \quad \text{ as } r \to \infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

What about non-real characters χ ?

Mak & Zaharescu, 2011: if one chooses a non-real character χ modulo each prime *r* (in any way), then under the same conditions on *H* as Davenport and Erdős we have

$$\Re rac{S_{\chi,H}(X)}{\sqrt{H}}, \quad \Im rac{S_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{ o} \mathsf{N}(0,1/2) \quad ext{ as } r o \infty.$$

Lamzouri, 2013: if one chooses a non-real character χ modulo each prime *r* (in any way), then under the same conditions on *H* as Davenport and Erdős we have

$$rac{\mathcal{S}_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{
ightarrow} Z_1 + iZ_2 \quad ext{ as } r
ightarrow \infty,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where Z_1, Z_2 are independent N(0, 1/2) random variables.

The condition $(\log H)/\log r \rightarrow 0$ arises because all these theorems are proved using the *method of moments*.

For example, Davenport and Erdős (with $\chi = (\frac{1}{r})$) calculated

$$\frac{1}{r}\sum_{0\leq x\leq r-1}\left(\frac{S_{\chi,H}(x)}{\sqrt{H}}\right)^{j} = \frac{1}{rH^{j/2}}\sum_{1\leq h_{1},\ldots,h_{j}\leq H}\sum_{x}\left(\frac{x+h_{1}}{r}\right)\ldots\left(\frac{x+h_{j}}{r}\right),$$

showing that for each fixed $j \in \mathbb{N}$ this converges to the standard normal moment $(1/\sqrt{2\pi}) \int_{-\infty}^{\infty} z^j e^{-z^2/2} dz$ as $r \to \infty$.

This uses the Weil bound:

- given a tuple (h₁,..., h_j) of shifts, if any shift h occurs with odd multiplicity then the sum over x is ≪_j √r;
- under the condition $(\log H)/\log r \rightarrow 0$, all these terms are

$$\ll_j \frac{1}{\sqrt{r}H^{j/2}} \sum_{\substack{1 \le h_1, \dots, h_j \le H, \\ \text{a shift occurs with odd multiplicity}}} 1 \le \frac{H^{j/2}}{\sqrt{r}} \to 0 \text{ as } r \to \infty.$$

Theorem 2 (Chatterjee & Soundararajan, 2012) If f(n) is a Rademacher random multiplicative function, and y = y(x) satisfies $x^{1/5} \log x \ll y = o(x/\log x)$, then

$$\frac{\sum_{x < n \le x + y} f(n)}{\sqrt{\mathbb{E}\left(\sum_{x < n \le x + y} f(n)\right)^2}} \stackrel{d}{\to} N(0, 1) \quad \text{ as } x \to \infty.$$

Motivated by Theorem 2, Lamzouri made the following conjecture. Conjecture 1 (Lamzouri, 2013)

If we choose a non-real character χ modulo each prime r (in any way), then provided $H \to \infty$ but $H = o(r/\log r)$ we have

$$rac{S_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{
ightarrow} Z_1 + iZ_2 \quad ext{ as } r
ightarrow \infty,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where Z_1, Z_2 are independent N(0, 1/2) random variables.

Is Lamzouri's conjecture reasonable?

- At first look, it seems plausible.
- ▶ But as already discussed, this problem involves values \(\chi(n)\) for large n (much bigger than \(\sqrt{r}\)). So we need to use the PFE (or something else that encodes periodicity) to properly analyse the situation.
- Also, a random multiplicative function is expected to model a randomly chosen character. Here the character is fixed, and the start point X of the interval varies randomly.

A negative result

Theorem 3 (H.)

Let A > 0 be arbitrary but fixed, and set $H(r) = r/\log^{A} r$. Then as r varies over large primes, there exists a corresponding sequence of non-real characters χ modulo r for which

$$rac{\mathcal{S}_{\chi,H}(X)}{\sqrt{H}}
eq Z_1 + iZ_2 \quad ext{ as } r o \infty,$$

where Z_1, Z_2 are independent N(0, 1/2) random variables.

Theorem 3 shows that Lamzouri's conjecture is false.

One can prove an analogous negative result for real characters $\left(\frac{\cdot}{r}\right)$.

Key steps in the proof:

• When $H = r / \log^A r$, the PFE implies that

$$\frac{S_{\chi,H}(x)}{\sqrt{H}} \approx \frac{\tau(\chi)\sqrt{H}}{r} \sum_{0 < |k| \le r/H} \overline{\chi}(-k)e(kx/r)$$
$$= \frac{\tau(\chi)\sqrt{H}}{r} \sum_{0 < |k| \le \log^{A} r} \overline{\chi}(-k)e(kx/r).$$

- For any fixed A > 0, we can find non-real Dirichlet characters χ mod r for which χ(k) looks "sort of like" 1 for all 1 ≤ k ≤ log^A r.
- For such χ , our sum $S_{\chi,H}(x)/\sqrt{H}$ will look "sort of like" the scaled Dirichlet kernel $\frac{\tau(\chi)\sqrt{H}}{r} \sum_{0 < |k| \le \log^{A} r} e(kx/r)$, which shouldn't have Gaussian behaviour.

Second part:

Granville and Soundararajan, 2001: for any A > 0 and any prime r that is large enough in terms of A, there exist (many) $\chi \mod r$ such that

$$|\sum_{n\leq \log^A r} \chi(n)| \gtrsim
ho(A) \log^A r,$$

where $\rho(A) > 0$.

(Roughly speaking, the χ produced are such that $\chi(p) \approx 1$ for all $p \leq \log r$. The lower bound comes from the contribution from $\log r$ -smooth numbers n, which are a positive proportion of all $n \leq \log^A r$.)

Third part: To rigorously exploit our lower bound $|\sum_{n \leq \log^{A} r} \chi(n)| \gtrsim \rho(A) \log^{A} r$, we need:

Lemma 1

Let $0 \le \tau < 1$, and suppose $(V_n)_{n=1}^{\infty}$ is a sequence of random variables satisfying $\mathbb{E}|V_n|^2 \le \tau$ for all n. Then if Z is any random variable such that $\mathbb{E}|Z|^2 = 1$, we have

$$V_n \stackrel{d}{\not\to} Z \quad \text{as } n \to \infty$$

Proof of Lemma 1.

Choose $a \in \mathbb{R}$ such that $\mathbb{E} \min\{|Z|^2, a^2\} \ge (1 + \tau)/2$ (such a exists by the monotone convergence theorem).

Since $v \mapsto \min\{|v|^2, a^2\}$ is a continuous *bounded* function on \mathbb{C} , if we had $V_n \stackrel{d}{\to} Z$ then we would have

$$\mathbb{E}\min\{|V_n|^2, a^2\} \to \mathbb{E}\min\{|Z|^2, a^2\} \quad \text{ as } n \to \infty.$$

But this is impossible, since $\mathbb{E}\min\{|V_n|^2, a^2\} \le \mathbb{E}|V_n|^2 \le \tau < (1+\tau)/2.$ Then if we let α be such that $\sum_{0 < k \le \log^{A} r} \overline{\chi}(-k) = \alpha \sum_{0 < k \le \log^{A} r} 1, \text{ and set}$ $G_{\chi,H}(x) := \frac{\alpha \tau(\chi) \sqrt{H}}{r} \sum_{1 \le k \le \log^{A} r} e(kx/r), \text{ we have}$ $\frac{S_{\chi,H}(x)}{\sqrt{H}} \approx \frac{\tau(\chi) \sqrt{H}}{r} \sum_{0 < |k| \le \log^{A} r} \overline{\chi}(-k) e(kx/r)$

$$= (\frac{\tau(\chi)\sqrt{H}}{r}\sum_{0<|k|\leq \log^{A}r}\overline{\chi}(-k)e(kx/r)-G_{\chi,H}(x))+G_{\chi,H}(x).$$

- ▶ Using the formula for the sum of a geometric progression, we see $G_{\chi,H}(x)$ is small whenever $\sqrt{rH} \le x \le r \sqrt{rH}$.
- This is almost all values of x mod r, so if S_{X,H}(X)/√H converges in distribution to Z₁ + iZ₂ then the same must be true for (^τ(x)√H ∑_{0<|k|≤log^A r} x̄(-k)e(kX/r) G_{X,H}(X)).

But if we compute

$$\mathbb{E} |\frac{\tau(\chi)\sqrt{H}}{r} \sum_{0 < |k| \le \log^A r} \overline{\chi}(-k) e(kX/r) - \mathcal{G}_{\chi,H}(X)|^2$$

(where $X \in \{0, 1, ..., r - 1\}$ is uniformly random), we find this is $\approx 1 - |\alpha|^2$.

A D N A 目 N A E N A E N A B N A C N

- We have $\mathbb{E}|Z_1 + iZ_2|^2 = \mathbb{E}Z_1^2 + \mathbb{E}Z_2^2 = 1.$
- And by our choice of χ, we know |α| is bounded away from zero (it is ≥ ρ(A)).
- So Theorem 3 follows from Lemma 1.

A positive result

The characters χ that we use to disprove Lamzouri's conjecture are rather pathological, so we might hope the conjecture could at least be true for "almost all" characters mod r.

Theorem 4 (H.)

Let H = H(r) be a function satisfying $\frac{\log(r/H)}{\log r} \to 0$ but H = o(r)as $r \to \infty$. Then there exist sets \mathcal{G}_r of characters mod r, satisfying $\frac{\#\mathcal{G}_r}{r-1} \to 1$, such that for $\chi \in \mathcal{G}_r$ we have

$$\frac{S_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{\to} Z_1 + iZ_2 \quad \text{ as } r \to \infty.$$

The condition that H = o(r) is natural (so the number $\approx r/H$ of terms in the PFE tends to infinity). The condition that $\frac{\log(r/H)}{\log r} \rightarrow 0$ is (presumably) just an artefact of the proof.

Key steps in the proof:

- ▶ Prove the analogous result for $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0 < |k| \le r/H} f(-k)e(kX/r)$, where f(k) is a Steinhaus random multiplicative function.
- This can be done using martingale theory. Another treatment, via moments and a non-trivial point counting problem, is in a 2020 paper of Benatar, Nishry and Rodgers.

► Compare the moments of $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0 < |k| \le r/H} f(-k)e(kX/r)$ with those of $\frac{\sqrt{H}}{\sqrt{r}} \sum_{0 < |k| \le r/H} \overline{\chi}(-k)e(kX/r)$. This is where the condition $\frac{\log(r/H)}{\log r} \to 0$ is used.

Open questions

As a replacement for Lamzouri's conjecture, I tentatively propose:

Conjecture 2

If we choose a non-real character χ modulo each prime r (in any way), then provided $H \to \infty$ and $\frac{\log(r/H)}{\log \log r} \to \infty$ we have

$$\frac{\mathcal{S}_{\chi,H}(X)}{\sqrt{H}} \stackrel{d}{\rightarrow} Z_1 + iZ_2 \quad \text{ as } r \rightarrow \infty,$$

where Z_1, Z_2 are independent N(0, 1/2) random variables. (And the analogous conjecture for real characters.)

Open question: Prove Conjecture 2.

But beware!

To prove the conjecture, we need to know that the construction used in Theorem 3 cannot be extended, so we need to know (at least) that

$$\sum_{n \leq r/H} \chi(n) = o(r/H) \; \forall \; \chi \neq \chi_0 \; \text{mod} \; r, \quad \text{provided} \; \frac{\log(r/H)}{\log \log r} \to \infty.$$

We only know how to prove this assuming GRH, so a proof of the conjecture will (probably!) need to be conditional.

Open question: Prove the conjecture for "almost all" χ on a range of *H* where it is unknown, e.g. when $H = \sqrt{r}$.

This will require finding an alternative to the method of moments (or perhaps a much cleverer application of it).