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Recall: r is a large prime, χ is a (non-principal) Dirichlet character
mod r .

Plan of the talk:

I Introduction to the maximum problem

I First thoughts (in light of PFE)

I Random multiplicative functions

I Distribution of the maximum

I Further thoughts



The problem

Investigate the statistical behaviour of

M(χ) := max
1≤x≤r

|
∑
n≤x

χ(n)|

as χ varies over non-principal characters mod r .

We would like to understand the proportion of χ for which M(χ)
attains certain sizes (in terms of r).

(We might also try to investigate the structure of large values, e.g.
is M(χ) largest for certain special χ?)



First thoughts

I Recall that we have the Pólya–Vinogradov bound

M(χ) ≤
√
r

2π
max
x
|
∑

0<|k|≤r

χ(−k)

k
(e(kx/r)− 1)|+ O(log r)

�
√
r log r .

I We might naively expect the size of M(χ) to be around
√
r

(roughly “squareroot cancellation”).

I Key point: If our naive expectation is correct, we only need
to think about quite large values of x , because for x ≤ r0.55

(say) the Burgess bound implies that

|
∑
n≤x

χ(n)| � (xr3/8)1/2 log r � r0.49.



I So this problem about M(χ) is a problem about long
character sums (large x).

I Thus we need to keep the Pólya Fourier expansion (PFE) in
mind.

I Thanks to the factor 1/k in the PFE, we expect the tails
(large k) not to contribute very much. For example, for any
fixed x (temporarily ignoring the maximum) we have

1

r − 1

∑
χ mod r

|
∑

r/2<k≤r

χ(−k)

k
(e(kx/r)− 1)|2

=
1

r − 1

∑
χ mod r

∑
r/2<k,l≤r

χ(−k)

k
(e(

kx

r
)− 1)

χ(−l)
l

(e(
−lx
r

)− 1)

=
∑

r/2<k<r

1

k2
|e(

kx

r
)− 1|2

� 1/r .



Random multiplicative functions

We can use the PFE to (partially) capture the periodic structure of
Dirichlet characters. How can we model/investigate the
multiplicative structure?

Definition 1
Let (f (p))p prime be independent Steinhaus random variables (i.e.
distributed uniformly on the unit circle {|z | = 1}). We define a
Steinhaus random multiplicative function by setting
f (n) :=

∏
pa||n f (p)a for all n, where pa||n means that pa is the

highest power of p that divides n.

Steinhaus random multiplicative functions are totally
multiplicative: f (mn) = f (m)f (n) for all m, n.



The general strategy:

I On n that aren’t too large (e.g. n ≤
√
r , away from the point

where we see the reflection/Fourier flip property of Dirichlet
characters), it seems reasonable to model the values χ(n) (for
randomly chosen χ mod r) by a Steinhaus random
multiplicative function f (n).

I The values f (n) are not all independent, e.g.
f (6) = f (2)f (3). So analysing the random multiplicative
model can be quite tricky...

I But if we can analyse the random model successfully, we can
conjecture things about the character sum problem.

I If the method for analysing the random model is sufficiently
robust (or can be made sufficiently robust), we might also be
able to prove things in the character sum case.



For example:
If 1 ≤ n,m < r then

1

r − 1

∑
χ mod r

χ(n)χ(m) =
1

r − 1

∑
χ mod r

χ(n/m) = 1n≡m mod r = 1n=m.

For any n,m, we have

Ef (n)f (m) = E
∏
pa||n

f (p)a
∏
pb||m

f (p)−b = 1n=m.

So if x < r , and if (an)n≤x are any coefficients, then

1

r − 1

∑
χ mod r

|
∑
n≤x

anχ(n)|2 =
1

r − 1

∑
χ mod r

∑
n,m≤x

anχ(n)amχ(m)

=
∑
n≤x
|an|2 = E|

∑
n≤x

anf (n)|2.



More generally:

For any k ∈ N such that xk < r , we have

1

r − 1

∑
χ mod r

|
∑
n≤x

anχ(n)|2k =
1

r − 1

∑
χ mod r

|(
∑
n≤x

anχ(n))k |2

= E|(
∑
n≤x

anf (n))k |2

= E|
∑
n≤x

anf (n)|2k .

We’ll come back to this later, and in Lectures 3 and 4.



In Lecture 3, we will also encounter:

Definition 2
Let (f (p))p prime be independent Rademacher random variables
(i.e. taking values ±1 with probability 1/2 each). We define a
Rademacher random multiplicative function by setting
f (n) :=

∏
p|n f (p) for all squarefree n, and f (n) = 0 when n is not

squarefree.

Rademacher random multiplicative functions are a good model for
a randomly chosen Legendre symbol, restricted to squarefree n.

(They were originally introduced to model the Möbius function
µ(n).)



A distributional result

Theorem 1 (Bober, Goldmakher, Granville & Koukoulopoulos,
2018)

Uniformly for all 1 ≤ τ ≤ log log r − 4, we have

e−C1eτ/τ ≤ 1

r − 1
#{χ mod r : M(χ) ≥ τ e

γ

π

√
r} ≤ e−C2eτ/τ ,

where C1,C2 > 0 are absolute constants.

Theorem 1 improves on various earlier bounds, e.g. Montgomery
and Vaughan (1979); Bober and Goldmakher (2013).

We say M(χ) has “doubly exponential tails”.



Key steps in the proof:

I Show that for a sufficiently large proportion (depending on τ)
of characters χ mod r , we can restrict the Pólya Fourier
expansion (PFE) to numbers k that are ≈ eτ -smooth (and of
size at most eτ

2
, say).

I Recall: a number k is y -smooth (or y -friable) if all prime
factors of k are ≤ y .

I Analyse the maximum of the remaining smooth part of the
PFE using the random multiplicative model and/or trivial
bounds.



First part:
We saw previously that, if we fix some x rather than taking a
maximum, then

1

r − 1

∑
χ mod r

|
∑

r/2<k≤r

χ(−k)

k
(e(kx/r)− 1)|2 � 1/r .

To handle smaller k (and deal with the maximum over x), the
approach is roughly:

I consider a higher exponent than the square, to boost the
saving even for small k;

I small prime factors (repeated with very high multiplicity)
cause the bounds to blow up when taking high exponents—
this is why we remove the ≈ eτ -smooth numbers in advance;

I use the union bound (carefully) to deal with maxx .



Second part:
We now want to analyse the distribution, as χ mod r varies, of

max
x
|τ(χ)

2πi

∑
0<|k|≤eτ2 ,

k is eτ smooth

χ(−k)

k
(e(kx/r)− 1)|.

Almost trivially, this has size

√
r

2π
max
x
|

∑
0<k≤eτ2 ,

k is eτ smooth

χ(k)

k
(χ(−1)(e(

kx

r
)− 1)− (e(

−kx
r

)− 1))|

.

√
r

2π

∑
0<k≤eτ2 ,

k is eτ smooth

2

k
≤
√
r

π

∏
p≤eτ

(1− 1

p
)−1.



The Mertens estimate implies that
∏

p≤eτ (1− 1
p )−1 ∼ eγτ (as

τ →∞), so the maximum of the smooth part of the PFE is

.
√
reγτ
π for all Dirichlet characters χ mod r . This suffices for the

upper bound in Theorem 1.

Of course, it isn’t just a coincidence that things worked out
like this!
The smoothness parameter eτ was chosen to match the bound we
are seeking on M(χ).
It is reasonable to use trivial bounds for the smooth piece, because
the factors 1/k in the PFE imply that the most probable way for
M(χ) to be large is a conspiracy of χ(p) for the smallest primes p.



For the lower bound in Theorem 1, we need to prove the existence
of sufficiently many χ mod r that make the maximum of the
smooth PFE large.

Since we want to produce large values, we can simplify matters by
picking a special value of x rather than retaining the maximum.
Taking x = r/2, and restricting to χ for which χ(−1) = −1, then

√
r

2π
|

∑
0<k≤eτ2 ,

k is eτ smooth

χ(k)

k
(χ(−1)(e(

kx

r
)− 1)− (e(

−kx
r

)− 1))|

=

√
r

2π
|

∑
0<k≤eτ2 ,

k is eτ smooth

χ(k)

k
(2− 2 cos(πk))|

=
2
√
r

π
|

∑
0<k≤eτ2 ,

k is eτ smooth

χ(k)

k
1k odd|.



Now we expect that the proportion of χ for which this is ≥ τ eγ

π

√
r

is

≈ P

(
2
√
r

π
|

∑
0<k≤eτ2 ,

k is eτ smooth

f (k)

k
1k odd| ≥ τ

eγ

π

√
r

)

≈ P

(
2|

∏
3≤p≤eτ

(1− f (p)

p
)−1| ≥ τeγ

)

≈ P

(
|f (p)− 1| ≤ 1

log τ
∀ 3 ≤ p ≤ eτ

)
≈ (

1

log τ
)e

τ/τ ,

as desired (more or less).



Since we are only dealing with values χ(p) and f (p) for very small
p (≤ eτ ≤ e log log r−4 = log r

e4
), it is fairly easy to compare the

actual character sums with the random multiplicative model.

For example, the moments

1

r − 1

∑
χ mod r

|
∑

0<k≤eτ2 ,
k is eτ smooth

χ(k)

k
1k odd|2l , E|

∑
0<k≤eτ2 ,

k is eτ smooth

f (k)

k
1k odd|2l

will exactly agree for all l ≤ (log r)/τ2.

Using high degree polynomials in χ(p) or f (p) to approximately
detect the conditions |χ(p)− 1| ≤ 1

log τ and |f (p)− 1| ≤ 1
log τ and

taking averages, one can also show the probabilities and
proportions roughly agree. (cf. Lecture 4)



Further developments

I Theorem 1 implies that for a very large proportion of χ mod
r , we have M(χ)�

√
r log log r .

I Assuming the Generalised Riemann Hypothesis is true,
Montgomery and Vaughan (1977) proved that
M(χ)�

√
r log log r for all χ 6= χ0 mod r . This is best

possible, in view of the lower bound in Theorem 1 (or earlier
results).

I But this bound can be improved if one assumes more (about
the order and/or “pretentiousness”) of the character χ.



I There are several other interesting problems about long
character sums

∑
n≤x χ(n) (i.e. with large x), which again

reduce to analysing only the first terms in the PFE.

I For example, Hussain (2020) investigates the path distribution
of t 7→ 1√

r

∑
n≤rt χ(n).

I Thanks to the factor 1/k in the PFE, one can solve these
problems without very precise information about random
multiplicative functions.


